設(shè),若,f(0)f(1)>0,求證:

(Ⅰ)方程有實根。

(Ⅱ)-2<<-1;

(Ⅲ)設(shè)是方程f(x)=0的兩個實根,則.

本題主要考查二次函數(shù)的基本性質(zhì)、不等式的基本性質(zhì)與解法,以及綜合運用所學知識分析和解決問題的能力。  

證明:(Ⅰ)若a=0,則b=-c.

f(0)f(1)=c(3a+2b+c

=-c2≤0,

與已知矛盾,

所以a≠0.

方程3ax2+2bx+c=0的判別式

Δ=4(b2-3ac),

由條件a+b+c=0,消去b,得

  Δ=4(a2+c2-ac

    =4[(a-c2+c2]   >0,

故方程fx)=0有實根.

(Ⅱ)由f(0)f(1)>0,得

c(3a+2b+c)>0,

   由條件a+b+c=0,消去c,得

a+b)(2a+b)<0.

      因為a2>0,

     所以(1+)(2+)<0,

    故-2<<-1.

(Ⅲ)由條件,知

x1+x2=

          所以(x1-x22=(x1+x22-4x1x2

                =.

    因為-2<<-1,

    所以≤(x1-x22.

    故≤|x1-x2|<.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x]上單調(diào)遞增,在[x,1]單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x為峰點,包含峰點的區(qū)間為含峰區(qū)間.
對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.
(Ⅰ)證明:對任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x1,1)為含峰區(qū)間;
(Ⅱ)對給定的r(0<r<0.5),證明:存在x1,x2∈(0,1),滿足x2-x1≥2r,使得由(Ⅰ)確定的含峰區(qū)間的長度不大于0.5+r;
(Ⅲ)選取x1,x2∈(0,1),x1<x2由(Ⅰ)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類似地可確定是一個新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2,x3的值,滿足兩兩之差的絕對值不小于0.02且使得新的含峰區(qū)間的長度縮短到0.34.
(區(qū)間長度等于區(qū)間的右端點與左端點之差).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)在定義域R內(nèi)可導,若f(x)=f(2-x),且當x∈(-∞,1)時,(x-1)f′(x)<0,設(shè)a=f(0),b=f(
1
2
),c=f(5)
,則a,b,c的大小順序為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•江西)設(shè)函數(shù)f(x)=
1
a
x,0≤x≤a
 
1
1-a
(1-x),
a<x≤1
常數(shù)且a∈(0,1).
(1)當a=
1
2
時,求f(f(
1
3
));
(2)若x0滿足f(f(x0))=x0,但f(x0)≠x0,則稱x0為f(x)的二階周期點,試確定函數(shù)有且僅有兩個二階周期點,并求二階周期點x1,x2;
(3)對于(2)中x1,x2,設(shè)A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),記△ABC的面積為s(a),求s(a)在區(qū)間[
1
3
,
1
2
]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案