已知函數(shù)f(n)=n2cos nπ,且an=f(n)+f(n+1),則a1+a2+a3+…+a100=( )
A.0 B.-100
C.100 D.10 200
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于, 四邊形ABCD是正方形.
(Ⅰ)求證;
(Ⅱ)求四棱錐E-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an},則“an,an+1,an+2(n∈N*)成等比數(shù)列”是“a=anan+2”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=4an-3(n∈N*).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an},如果數(shù)列{bn}滿足b1=a1,bn=an+an-1,n≥2,n∈N*,則稱數(shù)列{bn}是數(shù)列{an}的“生成數(shù)列”.
(1)若數(shù)列{an}的通項(xiàng)為an=n,寫出數(shù)列{an}的“生成數(shù)列”{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}的通項(xiàng)為cn=2n+b(其中b是常數(shù)),試問數(shù)列{cn}的“生成數(shù)列”{qn}是否是等差數(shù)列,請說明理由;
(3)已知數(shù)列{dn}的通項(xiàng)為dn=2n+n,求數(shù)列{dn}的“生成數(shù)列”{pn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
將石子擺成如圖的梯形形狀,稱數(shù)列5,9,14,20,…為梯形數(shù),根據(jù)圖形的構(gòu)成,此數(shù)列的第2 012項(xiàng)與5的差即a2 012-5=( )
A.2 018×2 012 B.2 018×2 011
C.1 009×2 012 D.1 009×2 011
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
對、,運(yùn)算“”、 “”定義為:=,=,則下列各式其中不恒成立的是( )
⑴ ⑵
⑶ ⑷
A.⑴、⑶ B.⑵、⑷
C.⑴、⑵、⑶ D.⑴、⑵、⑶、⑷
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com