(10分)已知數(shù)列中,,,其前項(xiàng)和
滿足
(Ⅰ)求證:數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;
(Ⅱ)設(shè)為數(shù)列的前項(xiàng)和,求
(Ⅲ)若對(duì)一切恒成立,求實(shí)數(shù)的最小值.
解:(Ⅰ)
(Ⅱ) ;
(Ⅲ)的最小值為
本試題主要是考查了數(shù)列的通項(xiàng)公式的求解和前n項(xiàng)和的求解,以及不等式的恒成立問(wèn)題的運(yùn)用。
(1)由已知, ,),且
數(shù)列是以為首項(xiàng),公差為1的等差數(shù)列.∴
(2)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/201408232237187961116.png" style="vertical-align:middle;" />
利用裂項(xiàng)求和得到前n項(xiàng)和的結(jié)論。
(3),∴ 
 
運(yùn)用分離參數(shù)的思想求解其范圍。
解:(Ⅰ)由已知, ,),且
數(shù)列是以為首項(xiàng),公差為1的等差數(shù)列.∴…………3分
(Ⅱ)
 …………6分
(Ⅲ),∴ 
 
 ,(也可以利用函數(shù)的單調(diào)性解答)
的最小值為               …………………………………10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)和為,已知

(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)求和:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知公差不為0的等差數(shù)列{an}滿足a1、a4、a16成等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,則的值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在數(shù)列中,,則
A.2009B.2010C.2011D.2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列的前項(xiàng)和,且滿足,則正整數(shù)_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列,滿足:,當(dāng)時(shí),;對(duì)于任意的正整數(shù),
.設(shè)數(shù)列的前項(xiàng)和為.
(Ⅰ)計(jì)算、,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)求滿足的正整數(shù)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列的通項(xiàng)公式為 , 則它的公差為 (   )
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,已知,則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列中,,且,則      .

查看答案和解析>>

同步練習(xí)冊(cè)答案