【題目】設,函數(shù).
(Ⅰ)若,求曲線在處的切線方程;
(Ⅱ)若無零點,求實數(shù)的取值范圍;
(Ⅲ)若有兩個相異零點,求證: .
【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ)證明見解析.
【解析】試題分析:
(Ⅰ)首先求得函數(shù)的導數(shù),然后利用導函數(shù)研究函數(shù)的切線可得曲線在處的切線方程是;
(Ⅱ)結合函數(shù)的解析式分類討論可得實數(shù)的取值范圍是;
(Ⅲ)由題意結合題中的結論構造函數(shù)即可證得題中的不等式.
試題解析:
(Ⅰ)函數(shù)的定義域為,
當時, ,則切線方程為,即.
(Ⅱ)①若時,則是區(qū)間上的增函數(shù),
∵,
∴,函數(shù)在區(qū)間有唯一零點;
②若有唯一零點;
③若,令,得,
在區(qū)間上, ,函數(shù)是增函數(shù);
在區(qū)間上, ,函數(shù)是減函數(shù);
故在區(qū)間上, 的最大值為,
由于無零點,須使,解得,
故所求實數(shù)的取值范圍是.
(Ⅲ)設的兩個相異零點為,設,
∵,∴,
∴,
∵,要證,只需證,
只需,等價于,
設上式轉化為),
設,
∴在上單調遞增,
∴,∴,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)在給定的直角坐標系內畫出f(x)的圖象;
(2)寫出f(x)的單調遞增區(qū)間和最值及取得最值時x的值(不需要證明);
(3)若方程f(x)﹣a=0,有三個實數(shù)根,求a的取 值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“累積凈化量”是空氣凈化器質量的一個重要衡量指標,它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標準,對空氣凈化器的累計凈化量有如下等級劃分:
累積凈化量(克) | 12以上 | |||
等級 |
為了了解一批空氣凈化器(共5000臺)的質量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中,按照、、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:
(1)求的值及頻率分布直方圖中的值;
(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?
(3)從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,圓的極坐標方程為,圓的極坐標方程為,已知與交于、兩點,點位于第一象限.
(Ⅰ)求點和點的極坐標;
(Ⅱ)設圓的圓心為,點是直線上的動點,且滿足,若直線的參數(shù)方程為(為參數(shù)),則的值為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下結論正確的是( )
A.若a<b且c<d,則ac<bd
B.若ac2>bc2 , 則a>b
C.若a>b,c<d,則a﹣c<b﹣d
D.若0<a<b,集合A={x|x= },B={x|x= },則A?B
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線C:y2=2px和⊙M:(x﹣4)2+y2=1,過拋物線C上一點H(x0 , y0)(y0≥1)作兩條直線與⊙M相切于A、兩點,分別交拋物線為E、F兩點,圓心點M到拋物線準線的距離為 .
(Ⅰ)求拋物線C的方程;
(Ⅱ)當∠AHB的角平分線垂直x軸時,求直線EF的斜率;
(Ⅲ)若直線AB在y軸上的截距為t,求t的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知橢圓 (m>n>0)的離心率e的值為 ,右準線方程為x=4.如圖所示,橢圓C左右頂點分別為A,B,過右焦點F的直線交橢圓C于M,N,直線AM,MB交于點P.
(1)求橢圓的標準方程;
(2)若點P(4, ),直線AN,BM的斜率分別為k1 , k2 , 求 .
(3)求證點P在一條定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com