已知AB>0,且直線Ax+By+C=0的傾斜角α滿(mǎn)足條sin
α
2
=
1+sinα
-
1-sinα
,則該直線的斜率是( 。
A、
4
3
B、-
4
3
C、
4
3
,或-
4
3
D、0
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值,直線的斜率
專(zhuān)題:直線與圓
分析:根據(jù)直線斜率和傾斜角之間的關(guān)系,判斷角的范圍,然后利用倍角公式將條件進(jìn)行化簡(jiǎn),利用正切的倍角公式即可得到結(jié)論.
解答: 解:∵AB>0,
∴直線的斜率k=-
A
B
<0
,即
π
2
<α<π
,
π
4
α
2
π
2
,即sin
α
2
>cos
α
2
,
sin
α
2
=
1+sinα
-
1-sinα
=
(sin
α
2
+cos
α
2
)
2
-
(sin
α
2
-cos
α
2
)
2
=sin?
α
2
+cos?
α
2
-(sin?
α
2
-cos?
α
2
)=2cos?
α
2

sin?
α
2
=2cos?
α
2
,
即tan
α
2
=2,
∴直線的斜率k=tanα=
2tan?
α
2
1-tan?2
α
2
=
2×2
1-22
=
4
-3
=-
4
3

故得:B.
點(diǎn)評(píng):本題主要考查直線的斜率公式的計(jì)算,以及同角的三角函數(shù)關(guān)系式,考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若ξ~N(2,σ2),且P(2<ξ<4)=0.4,則P(ξ<0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足a1>0,
an+1
an
=
1
2
,則數(shù)列{an}是( 。
A、遞增數(shù)列B、遞減數(shù)列
C、擺動(dòng)數(shù)列D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(1,2)與直線2x+y=0平行的直線方程是( 。
A、2x+y-4=0
B、2x+y+4=0
C、x+
1
2
y-1=0
D、x+4y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=BC=3,∠ABC=30°,AD是邊BC上的高,則|
AD
AC
|的值等于( 。
A、0
B、
9
4
C、4
D、-
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為零的等差數(shù)列{an}的前10項(xiàng)和S10=55,且a2,a4,a8成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿(mǎn)足bn=an+2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-3x+alnx(a>0).
(Ⅰ)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)設(shè)函數(shù)f(x)圖象上任意一點(diǎn)的切線l的斜率為k,當(dāng)k的最小值為1時(shí),求此時(shí)切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
(3)若該商場(chǎng)獲得利潤(rùn)不低于500元,試確定銷(xiāo)售單價(jià)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)集R上定義運(yùn)算:x?y=x(a-y)(a∈R,a為常數(shù)),若f(x)=ex,g(x)=e-x+2x2,F(xiàn)(x)=f(x)?g(x),
(Ⅰ)求F(x)的解析式;
(Ⅱ)若F(x)在R上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若a=-3,在F(x)的曲線上是否存在兩點(diǎn),使得過(guò)這兩點(diǎn)的切線互相垂直?若存在,求出切線方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案