函數(shù)時(shí)有極值10,則的值為(    )
A.-3或4B.4C.-3 D.3或 4
B

試題分析:對(duì)函數(shù)f(x)求導(dǎo)得 f′(x)=3x2+2ax+b,又∵在x=1時(shí)f(x)有極值10,∴f′(1)=3+2a+b=0  f(1)=1+a+b+a2=10,解得 a=4,b=-11  或 a=-3,b=3,當(dāng)a=-3,b=3時(shí),在x=1時(shí)f(x)無極值;當(dāng)a=4,b=-11  符合題意.故選:B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中),為f(x)的導(dǎo)函數(shù).
(1)求證:曲線y=在點(diǎn)(1,)處的切線不過點(diǎn)(2,0);
(2)若在區(qū)間中存在,使得,求的取值范圍;
(3)若,試證明:對(duì)任意,恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點(diǎn)的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點(diǎn)的連線的斜率小于l,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

己知a∈R,函數(shù)
(1)若a=1,求曲線在點(diǎn)(2,f (2))處的切線方程;
(2)若|a|>1,求在閉區(qū)間[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,且在點(diǎn)
處的切線方程為.
(1)求的值;
(2)若函數(shù)在區(qū)間內(nèi)有且僅有一個(gè)極值點(diǎn),求的取值范圍;  
(3)設(shè)為兩曲線,的交點(diǎn),且兩曲線在交點(diǎn)處的切線分別為.若取,試判斷當(dāng)直線軸圍成等腰三角形時(shí)值的個(gè)數(shù)并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的值為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)恰可以作曲線的兩條切線,則的值為        ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若f(x)=ax4+bx2+c滿足f′(1)=2,則f′(﹣1)=( 。
A.﹣4B.﹣2C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)圖象與直線相切,切點(diǎn)橫坐標(biāo)為.
(1)求函數(shù)的表達(dá)式和直線的方程;(2)求函數(shù)的單調(diào)區(qū)間;
(3)若不等式對(duì)定義域內(nèi)的任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案