8.已知函數(shù)f(x)的定義域是(2,6],則函數(shù)f(2x)的定義域是(1,3].

分析 函數(shù)f(x)的定義域是(2,6],由2<2x≤6,得1<x≤3,由此可得函數(shù)f(2x)的定義域.

解答 解:∵函數(shù)f(x)的定義域是(2,6],
∴由2<2x≤6,得1<x≤3.
∴函數(shù)f(2x)的定義域是(1,3].
故答案為:(1,3].

點評 本題考查函數(shù)的定義域及其求法,關(guān)鍵是掌握該類問題的解決方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.輸入x=2,運行如圖的程序輸出的結(jié)果為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}前n項的和為${S_n},且{a_1}=1,\frac{S_n}{n}={a_n}-n+1$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}={a_n}•{3^{a_n}}$,求數(shù)列{bn}前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤1\\ lgx,x>1\end{array}\right.$,則f[f(10)]=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)計算$\frac{2}{3}lg8+lg25-{3^{2{{log}_3}5}}+{16^{\frac{3}{4}}}$的值;
(2)已知a+a-1=5,求a2+a-2和${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.將二進制數(shù)101101(2)化為十進制數(shù),結(jié)果為45;再將結(jié)果化為8進制數(shù),結(jié)果為55(8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知拋物線的焦點坐標(biāo)是(0,-3),則拋物線的標(biāo)準(zhǔn)方程是x2=-12y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{2x+3}{3x}$,數(shù)列{an}滿足${a_1}=1,{a_{n+1}}=f(\frac{1}{a_n}),(n∈{N^*})$
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a_{n-1}}{a_n}}}(n≥2),{b_1}$=3,數(shù)列{bn}的前n項和為Sn,證明:對一切n∈N*,都有Sn<$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知tan($\frac{π}{4}$+α)=2,tan(α-β)=$\frac{1}{2}$,α∈(0,$\frac{π}{4}$),β∈(-$\frac{π}{4}$,0).
(1)求tanα的值;
(2)求$\frac{1}{2sinαcosα+co{s}^{2}α}$的值;
(3)求2α-β的值.

查看答案和解析>>

同步練習(xí)冊答案