已知正數(shù)x、y滿足xy=2x+1,則x+y的最小值是( 。
A、1
B、3
C、4
D、2+2
2
考點(diǎn):基本不等式
專(zhuān)題:不等式的解法及應(yīng)用
分析:由于正數(shù)x、y滿足xy=2x+1,則y=
1
x
+2,則x+y=
1
x
+2+x,再利用基本不等式的性質(zhì)可得.
解答: 解:由于正數(shù)x、y滿足xy=2x+1,則y=
1
x
+2,
則x+y=
1
x
+2+x≥2+2
x•
1
x
=4,當(dāng)且僅當(dāng)x=1,y=3時(shí)取等號(hào),
故x+y的最小值是4,
故選:C.
點(diǎn)評(píng):本題主要考查基本不等式的應(yīng)用,注意基本不等式的使用條件,并注意檢驗(yàn)等號(hào)成立的條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式0<|x-2|≤1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,已知a1+a19=-18,則a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC1中,AO是BC1邊上的高,OA=OB=2,OC1=3,將△OAC1沿直線OA翻折成△OAC,若二面角C-OA-B為直二面角,D為四面體OABC外一點(diǎn),給出下列命題:
①存在點(diǎn)D,使四面體ABCD有3個(gè)面是直角三角形;
②存在點(diǎn)D,點(diǎn)O在四面體ABCD的外接球球面上;
③不存在點(diǎn)D,使CD與AB垂直并且相等;
④不存在點(diǎn)D,使四面體ABCD是正三棱錐.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-x-2>0},B={x|x2+ax+b≤0},且A∪B=R,A∩B={x|2<x≤3},則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B滿足:16sinAsinB=
sinA+sinB
sinA-sinB
,且△ABC外接圓半徑為2,則邊長(zhǎng)BC的最小值為( 。
A、2
B、
2
+1
C、2
2
-1
D、
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,若a=2bcosC,這個(gè)三角形一定是( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1的一條漸近線被拋物線y=x2截得的弦長(zhǎng)為2
5
,則雙曲線的離心率為( 。
A、
5
B、5
C、
5
4
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1,4,a2,1成等差數(shù)列,b1,4,b2,1,b3成等比數(shù)列,則b2(a2-a1)=(  )
A、±6B、-6C、3D、±3

查看答案和解析>>

同步練習(xí)冊(cè)答案