【題目】在直角坐標(biāo)系xOy中,曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線M的極坐標(biāo)方程為.
(1)求C的極坐標(biāo)方程和曲線M的直角坐標(biāo)方程;
(2)若M與C只有1個公共點(diǎn)P,求m的值與P的極坐標(biāo)(,).
【答案】(1)C的極坐標(biāo)方程:,M的直角坐標(biāo)方程:;(2),P的極坐標(biāo).
【解析】
(1)由公式可進(jìn)行極坐標(biāo)方程與直角坐標(biāo)方程的互化;
(2)由于圓的圓心在圓上,因此兩圓內(nèi)切,從而可得值,求出兩圓交點(diǎn)坐標(biāo)后再化為極坐標(biāo).
(1)可化為,
則C的極坐標(biāo)方程為,
即. M的直角坐標(biāo)方程為.
(2)易知曲線C表示經(jīng)過原點(diǎn)圓心為,半徑為2的圓,曲線M表示圓心為原點(diǎn),半徑為m的圓.因?yàn)?/span>M與C只有1個公共點(diǎn)P,所以M與C內(nèi)切,
所以,即. 由,得.
故P的極坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩隊(duì)進(jìn)行籃球決賽,采取五場三勝制(當(dāng)一隊(duì)贏得三場勝利時,該隊(duì)獲勝,比賽結(jié)束).根據(jù)前期比賽成績,甲隊(duì)的主客場安排依次為“主主客客主”.設(shè)甲隊(duì)主場取勝的概率為,客場取勝的概率為,且各場比賽結(jié)果相互獨(dú)立,則甲隊(duì)不超過場即獲勝的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①“三個球全部放入兩個盒子,其中必有一個盒子有一個以上的球”是必然事件
②“當(dāng)為某一實(shí)數(shù)時可使”是不可能事件
③“明天全天要下雨”是必然事件
④“從100個燈泡(6個是次品)中取出5個,5個都是次品”是隨機(jī)事件.
其中正確命題的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知扇形的周長為8,面積是4,求扇形的圓心角.
(2)已知扇形的周長為40,當(dāng)它的半徑和圓心角取何值時,才使扇形的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“中華好詩詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩詞經(jīng)典的熱潮.某社團(tuán)為調(diào)查大學(xué)生對于“中華詩詞”的喜好,從甲、乙兩所大學(xué)各隨機(jī)抽取了40名學(xué)生,記錄他們每天學(xué)習(xí)“中華詩詞”的時間,并整理得到如下頻率分布直方圖:
根據(jù)學(xué)生每天學(xué)習(xí)“中華詩詞”的時間,可以將學(xué)生對于“中華詩詞”的喜好程度分為三個等級 :
(Ⅰ)從甲大學(xué)中隨機(jī)選出一名學(xué)生,試估計(jì)其“愛好”中華詩詞的概率;
(Ⅱ)從兩組“癡迷”的同學(xué)中隨機(jī)選出2人,記為選出的兩人中甲大學(xué)的人數(shù),求的分布列和數(shù)學(xué)期望;
(Ⅲ)試判斷選出的這兩組學(xué)生每天學(xué)習(xí)“中華詩詞”時間的平均值與的大小,及方差與的大。(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“文化強(qiáng)國建設(shè)”號召,并增加學(xué)生們對古典文學(xué)的學(xué)習(xí)興趣,雅禮中學(xué)計(jì)劃建設(shè)一個古典文學(xué)熏陶室.為了解學(xué)生閱讀需求,隨機(jī)抽取200名學(xué)生做統(tǒng)計(jì)調(diào)查.統(tǒng)計(jì)顯示,男生喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女生喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)學(xué)生積極參與閱讀古典文學(xué)書籍,語文教研組計(jì)劃牽頭舉辦雅禮教育集團(tuán)古典文學(xué)閱讀交流會.經(jīng)過綜合考慮與對比,語文教研組已經(jīng)從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男生代表和2名女生代表參加交流會,記為參加交流會的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知f(x)=|x+a|(a∈R).
(1)若f(x)≥|2x﹣1|的解集為[0,2],求a的值;
(2)若對任意x∈R,不等式f(x)+|x﹣a|≥3a﹣2恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com