(本小題滿分12分)
已知函數(shù),
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間和極值點;
(Ⅱ)若函數(shù)有極值點,記過點與原點的直線斜率為。是否存在使?若存在,求出值;若不存在,請說明理由。
(1);
(2)不存在使過點與原點的直線斜率

試題分析:(1)因為                 (1分)
所以, 恒成立。因此 (3分)

因此 (5分)
(2)由(1)可知,在存在極小值.
,由條件
               (7分)
(注:此處也可以用換元法,轉(zhuǎn)證t-lnt=0(t=a/3)無解。采分相同)
設(shè))                   (8分)
,且當(dāng),遞減;
當(dāng),遞增;              (10分)
處取得最小值,;無零點.
無解,
所以不存在使過點與原點的直線斜率     (12分)
點評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,(2)通過研究函數(shù)的極值情況,確定得到含a的方程,通過研究方程解的有無,明確a的存在性。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的最大值是(   )
A.1B.C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為定義在上的可導(dǎo)函數(shù),且對任意恒成立,則 (    )
A.
B.
C 
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分) 已知函數(shù)f(x)=ax3+bx2+cx(a≠0)是定義在R上的奇函數(shù),且x=-1時,函數(shù)取極值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤2;
(3)求證:曲線y=f(x)上不存在兩個不同的點A,B,使過A, B兩點的切線都垂直于直線AB。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)設(shè)函數(shù)
(1)若;
(2)若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若曲線在點處的切線方程為,則
A.B.
C.D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1) 若的極值點,求在[1,]上的最大值;
(2) 若在區(qū)間[1,+)上是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)已知曲線y=
(1)求曲線在x=2處的切線方程;(2)求曲線過點(2,4)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù),.
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間上不存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案