分析 由命題p為真命題,知x∈(1,+∞),使對數(shù)式的真數(shù)大于0成立,然后采用分離變量的辦法把t分離出來,求出分離變量后的函數(shù)的值域,則t的范圍可求.
解答 解:若¬P為假命題,則p為真命題.不等式tx2+2x-2>0有屬于x∈(1,+∞)的解,即t>$\frac{2}{{x}^{2}}$-$\frac{2}{x}$有屬于(1,+∞)的解,
又1<x時,$0<\frac{1}{x}<1$,所以$\frac{2}{{x}^{2}}$-$\frac{2}{x}$=2($\frac{1}{x}$-$\frac{1}{2}$)2-$\frac{1}{2}$∈[-$\frac{1}{2}$,0).
?x∈(1,+∞),函數(shù)g(x)=log2(tx2+2x-2)恒有意義,故t≥0.
故答案為:[0,+∞).
點(diǎn)評 本題考查了命題的否定,訓(xùn)練了分離變量法求字母的范圍,一個命題與它的否命題真假相反,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [13,17] | B. | [12,13] | C. | [$\frac{3}{4}$,12] | D. | [$\frac{3}{4}$,13] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-2i | B. | 2+2i | C. | 1-2i | D. | 1+2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com