【題目】已知{an}是等比數(shù)列,an>0,a3=12,且a2 , a4 , a2+36成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){bn}是等差數(shù)列,且b3=a3 , b9=a5 , 求b3+b5+b7+…+b2n+1

【答案】
(1)解:設(shè)等比數(shù)列{an}的公比為q,

∵an>0,可得q>0.

∵a2,a4,a2+36成等差數(shù)列.∴2a4=a2+a2+36,

∴2a3q=2 +36,即2×12q=2× +36,化為:2q2﹣3q﹣2=0,

解得q=2.

=12,解得a1=3.

∴an=3×2n﹣1


(2)解:由(1)可得:

b3=a3=12,b9=a5=3×24=48.

設(shè)等差數(shù)列{bn}的公差為d,則b1+2d=12,b1+8d=48,

解得b1=0,d=6.

∴bn=6(n﹣1).

∴b2n+1=12n.

∴b3+b5+b7+…+b2n+1=12× =6n2+6n


【解析】(1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.(2)利用等比數(shù)列與等差數(shù)列的通項(xiàng)公式、求和公式即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 ,縱坐標(biāo)不變,再向右平移 個(gè)單位長度,得到函數(shù)y=g(x)的圖象,則下列說法正確的是(
A.函數(shù)g(x)的一條對稱軸是
B.函數(shù)g(x)的一個(gè)對稱中心是
C.函數(shù)g(x)的一條對稱軸是
D.函數(shù)g(x)的一個(gè)對稱中心是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時(shí),求f(x)的值域;
(2)當(dāng)x∈[﹣1,1]時(shí),求f(x)的最小值h(a);
(3)是否存在實(shí)數(shù)m、n,同時(shí)滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域?yàn)閇m,n]時(shí),其值域?yàn)閇m2 , n2],若存在,求出m、n的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四面體ABCD的頂點(diǎn)都在同一個(gè)球的球面上,BC= ,BD=4,且滿足BC⊥BD,AC⊥BC,AD⊥BD.若該三棱錐的體積為 ,則該球的球面面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成一個(gè)大的正方形,若圖中直角三角形兩銳角分別為α、β,且小正方形與大正方形面積之比為4:9,則cos(α﹣β)的值為(
A.
B.
C.
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l: (m為常數(shù)).
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),當(dāng)|AB|=4時(shí),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2的正方形ABCD沿對角線BD折疊,使得平面ABD丄平面CBD,若AM丄平面ABD,且AM=
(1)求證:DM⊥平面ABC;
(2)求二面角C﹣BM﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣2)2+(y﹣1)2=1,點(diǎn)P為直線x+2y﹣9=0上一動(dòng)點(diǎn),過點(diǎn)P向圓C引兩條切線PA,PB,其中A,B為切點(diǎn),則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABEF所在的平面與△ABC所在的平面相互垂直,AB=4,BC= ,BC⊥BE,∠ABE=

(1)求證:BC⊥平面ABEF;
(2)求平面ACF與平面BCE所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案