精英家教網 > 高中數學 > 題目詳情
給出下列5個命題:①函數f(x)=x|x|+ax+m是奇函數的充要條件是m=0;②若函數f(x)=lg(ax+1)的定義域是{x|x<1},則a<-1;③若loga2<logb2,則
lim
n→∞
an-bn
an+bn
=1
(其中n∈N*);④圓:x2+y2-10x+4y-5=0上任意一點M關于直線ax-y-5a=2的對稱點M'也在該圓上;⑤函數y=cos|x|是周期函數.其中正確結論的序號是
①④⑤
①④⑤
.(填寫你認為正確的所有結論序號)
分析:依據各選項中的已知條件,逐一分析各個各個選項是否正確,把正確的選項找出來,填在橫線上.
解答:解:①函數f(x)的定義域是實數集R,關于原點對稱,此函數奇函數的充要條件是f(-x)=-f(x),即-x|x|-ax+m=-x|x|-ax-m,即 m=0,故①正確.
②函數f(x)=log(ax+1)的定義域是{x|x<l},故 a<0,且ax+1>0的解集是x<l,故只有a=-1,故②不正確.
③∵loga2<logb2,∴a>b>1,或者
b>1
0<a <1
,
當a>b>1時,則
lim
n→∞
an-bn
an+bn
=
lim
n→∞
 
1- (
b
a
)
n
1+(
b
a
)
n
=
1-0
1+0
=1,
當 b>1 且 0<a<1時,則
lim
n→∞
an-bn
an+bn
=
lim
n→∞
 
0-(-b)n
0+bn
=(-1)n=±1,
故③不正確.
④圓:x2+y2-10x+4y-5=0 即 (x-5)2+(y+2)2=34,圓心為(5,-2)
直線ax-y-5a=2 即a(x-5)-y-2=0,此直線過定點(5,-2),即圓的圓心,故圓:x2+y2-10x+4y-5=0 關于此直線
對稱,故④正確.
⑤函數y=cos|x|是周期為π的周期函數.故⑤正確.
綜上,①④⑤正確,②③不正確,
故答案為 ①④⑤.
點評:本題考查函數的奇偶性、周期性、定義域、直線過定點、點關于直線對稱,以及極限的運算,體現(xiàn)了等價轉化和分類討論的數學思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•丹東模擬)設l、m是兩條不同的直線,α、β是兩個不同的平面,給出下列5個命題:
①若m⊥α,l⊥β,則l∥α;
②若m⊥α,l?β,l∥m,則α⊥β;
③若α∥β,l⊥α,m∥β,則l⊥m;
④若α∥β,l∥α,m?β,則l∥m;
⑤若α⊥β,α∩β=l,m⊥l,則m⊥β.
其中正確命題的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列5個命題:
①一次函數在其定義域內只有一個零點;
②二次函數在其定義域內至多有兩個零點;
③指數函數在其定義域內沒有零點;
④對數函數在其定義域內只有一個零點;
⑤冪函數在其定義域內可能有零點,也可能無零點.
其中,正確命題的序號分別是
①②③④⑤
①②③④⑤
.(不寫、少寫、多寫都不得分。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•自貢三模)給出下列5個命題:
①0<a≤
1
5
是函數f(x)=ax2+2(a-1)x+2在區(qū)間(-∞,4]上為單調減函數的充要條件
②如圖所示,“嫦娥探月衛(wèi)星”沿地月轉移軌道飛向月球,在月球附近一點P進入以月球球心F為一個焦點的橢圓敘道I繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道II繞月飛行,最終衛(wèi)星在P點第三次變軌進入以F為圓心的圓形軌道III繞月飛行,若用2cl和2c2分別表示橢圓軌道I和II的焦距,用2a1和2a2分別表示橢圓軌道I和II的長軸的長,則有a1-c1=a2-c2;
③y=f(x)與它的反函數y=f-1(x)的圖象若相交,則交點必在直線y=x上;
④若a∈(π,
4
),則
1
1-tanα
>1+tanα>
2tanα
;
⑤函數f(x)=
e-x+3
e-x+2
(e是自然對數的底數)的最小值為2.
其中所有真命題的代號有
②④
②④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實數)到實數集R上的映射過程:區(qū)間(0,k)中的實數m對應線段AB上的點M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數m對應的實數就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①f(
k
2
)=6
;②函數f(m)是奇函數;③函數f(m)在(0,k)上單調遞增;④函數f(m)的圖象關于點(
k
2
,0)
對稱;⑤函數f(m)=3
3
時AM過橢圓的右焦點.其中所有的真命題是( 。

查看答案和解析>>

同步練習冊答案