【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)若不等式對(duì)于任意成立,求正實(shí)數(shù)的取值范圍.
【答案】(1)見(jiàn)解析;(2).
【解析】
(1),對(duì)a分類(lèi)討論以確定函數(shù)的單調(diào)增區(qū)間;(2)不等式對(duì)任意成立等價(jià)于對(duì)任意,有成立.設(shè),,則只要即可.
(1)由題意得,函數(shù)的定義域?yàn)?/span>.
.
若,則當(dāng)或時(shí),,此時(shí)單調(diào)遞增,當(dāng)時(shí),,此時(shí)單調(diào)遞減.若,則當(dāng)時(shí),,此時(shí)單調(diào)遞減;當(dāng)時(shí),即,此時(shí)單調(diào)遞增.
綜上所述,當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),函數(shù)在上單調(diào)遞減,在和上單調(diào)遞增.
(2)不等式對(duì)任意成立等價(jià)于對(duì)任意,有成立.
設(shè),,則只要即可.
.
令,得;令,得.
所以函數(shù)在是哪個(gè)單調(diào)遞減,在上單調(diào)遞增.
所以的最大值為與中的較大者.
設(shè),
則,
所以在上單調(diào)遞增,所以,所以.
從而.所以,即.
設(shè),則,
所以在上單調(diào)遞增.
又,所以的解為.
因?yàn)?/span>,所以正實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)大型噴水池的中央有一個(gè)強(qiáng)力噴水柱,為了測(cè)量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點(diǎn)A測(cè)得水柱頂端的仰角為45°,沿點(diǎn)A向北偏東30°前進(jìn)100 m到達(dá)點(diǎn)B,在B點(diǎn)測(cè)得水柱頂端的仰角為30°,則水柱的高度是( )
A. 50 mB. 100 m
C. 120 mD. 150 m
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一扇形的圓心角為α,半徑為R,弧長(zhǎng)為l.
(1)若α=60°,R=10 cm,求扇形的弧長(zhǎng)l;
(2)已知扇形的周長(zhǎng)為10 cm,面積是4 cm2,求扇形的圓心角;
(3)若扇形周長(zhǎng)為20 cm,當(dāng)扇形的圓心角α為多少弧度時(shí),這個(gè)扇形的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,有下列結(jié)論:
①平面;
②異面直線AD與所成的角為;
③三棱柱的體積是三棱錐的體積的四倍;
④在四面體中,分別連接三組對(duì)棱的中點(diǎn)的線段互相垂直平分.
其中正確的是________(填出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在區(qū)間上的值域;
(2)若過(guò)點(diǎn)存在條直線與曲線相切,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)在某一個(gè)周期內(nèi)的圖像時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 3 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并寫(xiě)出函數(shù)的解析式(直接寫(xiě)出結(jié)果即可);
(2)根據(jù)表格中的數(shù)據(jù)作出在一個(gè)周期內(nèi)的圖像;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生會(huì)為了解該校學(xué)生對(duì)2017年全國(guó)兩會(huì)的關(guān)注情況,隨機(jī)調(diào)查了該校200名學(xué)生,并將這200名學(xué)生分為對(duì)兩會(huì)“比較關(guān)注”與“不太關(guān)注”兩類(lèi).已知這200名學(xué)生中男生比女生多20人,對(duì)兩會(huì)“比較關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,對(duì)兩會(huì)“不太關(guān)注”的學(xué)生中男生比女生少5人.
(1)根據(jù)題意建立列聯(lián)表,并判斷是否有的把握認(rèn)為男生與女生對(duì)兩會(huì)的關(guān)注有差異?
(2)該校學(xué)生會(huì)從對(duì)兩會(huì)“比較關(guān)注”的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取7人,再?gòu)倪@7人中隨機(jī)選出2人進(jìn)行回訪,求這2人全是男生的概率.
參考公式和數(shù)據(jù):,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在海岸處,發(fā)現(xiàn)北偏東方向,距離A為海里的B處有一艘走私船,在A處北偏西方向距離為海里的處有我方一艘輯私艇奉命以海里/小時(shí)的速度追截走私船,此時(shí)走私船正以海里/小時(shí)的速度從處向北偏東方向逃竄,問(wèn)輯私艇沿什么方向,才能最快追上走私船?需要多長(zhǎng)時(shí)間?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com