【題目】某校有六間不同的電腦室,每天晚上至少開放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個結(jié)果:①;②26-7;③,其中正確的結(jié)論是( )
A. 僅有① B. 僅有② C. ②與③ D. 僅有③
【答案】C
【解析】根據(jù)題意,依次分析3位同學(xué)給出的個結(jié)果:
對于①C62,由組合意義,可得求的是6間不相同的電腦室只開放2間的方案數(shù),顯然錯誤;
對于②26-7,6間電腦室開方與否,其情況數(shù)目共有26種,其中都不開放和只開放1間的方案有C60+C61=7種,則26-7的含義為用全部的方案個數(shù)減都不開放和只開放1間的方案數(shù)目,故正確
對于③C63+2C64+C65+C66,因為C62=C64,則可以變形為C62+C63+C64+C65+C66,其含義是電腦室開放2間、3間,4間、5間、6間的方案數(shù)目之和;故正確.
即②和③正確.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對本企業(yè)900名員工的工作滿意度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(其中16名女員工,14名男員工)的得分,如下表:
女 | 47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49 |
男 | 37 35 34 43 46 36 38 40 39 32 48 33 40 34 |
(Ⅰ)現(xiàn)求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為“滿意”,否則為“不滿意”,請完成下列表格:
“滿意”的人數(shù) | “不滿意”的人數(shù) | 合計 | |
女 | 16 | ||
男 | 14 | ||
合計 | 30 |
(Ⅱ)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?
參考數(shù)據(jù):
0.10 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時,求曲線y=f(x)在點(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查在級風(fēng)的海上航行中71名乘客的暈船情況,在男人中有12人暈船,25人不暈船,在女人中有10人暈船,24人不暈船
(1)作出性別與暈船關(guān)系的列聯(lián)表;
(2)根據(jù)此資料,能否在犯錯誤的概率不超過0.1的前提下認(rèn)為級風(fēng)的海上航行中暈船與性別有關(guān)?
暈船 | 不暈船 | 總計 | |
男人 | |||
女人 | |||
總計 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(x+)n展開式的二項式系數(shù)之和為256
(1)求n;
(2)若展開式中常數(shù)項為,求m的值;
(3)若展開式中系數(shù)最大項只有第6項和第7項,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知每一項都是正數(shù)的數(shù)列滿足, .
(1)用數(shù)學(xué)歸納法證明: ;
(2)證明: ;
(3)記為數(shù)列的前項和,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若函數(shù)在上為減函數(shù),求的最小值;
(Ⅱ)若函數(shù)(, 為自然對數(shù)的底數(shù)),,對于任意的,恒有成立,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)A的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”,給出下列命題:
①對于任意一個圓,其“優(yōu)美函數(shù)“有無數(shù)個”;
②函數(shù)可以是某個圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
④函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對稱圖形.
其中正確的命題是:( )
A. ①③ B. ①③④ C. ②③ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了以“重溫時代經(jīng)典,唱響回聲嘹亮”為主題的“紅歌”歌詠比賽. 該校高一年級有1,2,3,4四個班參加了比賽,其中有兩個班獲獎. 比賽結(jié)果揭曉之前,甲同學(xué)說:“兩個獲獎班級在2班、3班、4班中”,乙同學(xué)說:“2班沒有獲獎,3班獲獎了”,丙同學(xué)說:“1班、4班中有且只有一個班獲獎”,丁同學(xué)說:“乙說得對”. 已知這四人中有且只有兩人的說法是正確的,則這兩人是
A. 乙,丁 B. 甲,丙 C. 甲,丁 D. 乙,丙
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com