某服裝加工廠對(duì)外批發(fā)某種服裝,生產(chǎn)成本為每件40元,對(duì)外批發(fā)價(jià)定為每件60元.該加工廠為了鼓勵(lì)零售商大批量購(gòu)買,推出優(yōu)惠政策:一次購(gòu)買不超過(guò)50件時(shí),只享受批發(fā)價(jià);一次購(gòu)買超過(guò)50件時(shí),每多購(gòu)買1件,購(gòu)買者所購(gòu)買的所有服裝可在享受批發(fā)價(jià)的基礎(chǔ)上,每件再降低0.2元,但每件最低價(jià)不低于50元.
(1)試寫出該種服裝實(shí)際售價(jià)與銷售數(shù)量的函數(shù)關(guān)系式;
(2)在每件實(shí)際售價(jià)高于50元時(shí),購(gòu)買者一次購(gòu)買多少件,加工廠獲得的利潤(rùn)最大?
(利潤(rùn)=銷售總額-成本)
(1)見(jiàn)解析(2)1125
(1)設(shè)購(gòu)買者一次購(gòu)買件,每件實(shí)際售價(jià)恰好是50元,
則由題得:,解得 
所以   
(2)當(dāng)時(shí),加工廠的利潤(rùn)為
最大利潤(rùn)為當(dāng)時(shí)取得,最大利潤(rùn)為
當(dāng)時(shí),加工廠的利潤(rùn)為,
最大利潤(rùn)為當(dāng)時(shí)取得,最大利潤(rùn)為1125元,
答:當(dāng)購(gòu)買者一次購(gòu)買75件時(shí),加工廠獲得的利潤(rùn)最大,為1125元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù)的定義域?yàn)镽,并滿足以下條件:①對(duì)任意,有;
②對(duì)任意、,有;③   則
(1)求的值;                                            (4分)         
(2)求證:在R上是單調(diào)增函數(shù);                          (5分)
(3)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)在R上連續(xù),則  (   )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)在區(qū)間上為增函數(shù),則實(shí)數(shù)a的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123138017629.gif" style="vertical-align:middle;" />對(duì)定義域內(nèi)的任意,都有
(1)求證:是偶函數(shù);
(2)求證:上是增函數(shù);
(3)解不等式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-2
(1)求證:f(x)是奇函數(shù)
(2)試判斷f(x)的單調(diào)性,并求f(x)在[-3,3]上的最值
(3)解不等式:f(x2-x)-f(x)≥-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果函數(shù)滿足:對(duì)任意實(shí)數(shù)都有,且,
_____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)在區(qū)間是增函數(shù),則常數(shù)a的取值范圍是
A.1≤a≤2B.a<1或a≥2C.1<a≤2D.a<1或a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義在R上的函數(shù),滿足,若則有                                                                    (   )
A.B.
C.D.不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案