<li id="qkqdv"><th id="qkqdv"></th></li>
<i id="qkqdv"><meter id="qkqdv"></meter></i>
  • <td id="qkqdv"><form id="qkqdv"></form></td>

    【題目】如圖,三棱錐中,平面,,的中點(diǎn),的中點(diǎn),點(diǎn)上,.

    (1)證明:平面

    (2)若,求點(diǎn)到平面的距離.

    【答案】(Ⅰ)證明過(guò)程見(jiàn)解析;(Ⅱ).

    【解析】試題分析:(Ⅰ)取的中點(diǎn),利用中位線的性質(zhì),可證明平面GEF//平面ABC,進(jìn)而得到EF//平面ABC;(Ⅱ)由題意可得到,可通過(guò)體積轉(zhuǎn)換,將體積看成以平面為底,即可求出點(diǎn)到平面的距離.

    試題解析:(Ⅰ)證明:如圖,取AD中點(diǎn)G,連接GEGF,則GE//AC,GF//AB

    因?yàn)?/span>GEGF=G,ACAB=A,所以平面GEF//平面ABC,

    所以EF//平面ABC

    (Ⅱ)∵平面ABC,∴

    平面PAB

    ,

    記點(diǎn)P到平面BCD的距離為d,則,

    ,

    所以,點(diǎn)P到平面BCD的距離為

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】已知函數(shù)f(x)=2sin(2x﹣ ),x∈R.

    (1)在給定的平面直角坐標(biāo)系中,畫(huà)函數(shù)f(x)=2sin(2x﹣ ),x∈[0,π]的簡(jiǎn)圖;
    (2)求f(x)=2sin(2x﹣ ),x∈[﹣π,0]的單調(diào)增區(qū)間;
    (3)函數(shù)g(x)=2cos2x的圖象只經(jīng)過(guò)怎樣的平移變換就可得到f(x)=2sin(2x﹣ ),x∈R的圖象?

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】已知函數(shù).

    (1)求上的最大值和最小值;

    (2)設(shè)曲線軸正半軸的交點(diǎn)為處的切線方程為,求證:對(duì)于任意的正實(shí)數(shù),都有.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】已知拋物線,圓,圓心到拋物線準(zhǔn)線的距離為3,點(diǎn)是拋物線在第一象限上的點(diǎn),過(guò)點(diǎn)作圓的兩條切線,分別與軸交于兩點(diǎn).

    (1)求拋物線的方程;

    (2)求面積的最小值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】已知點(diǎn),橢圓 的離心率為是橢圓的右焦點(diǎn),直線的斜率為為坐標(biāo)原點(diǎn).

    (1)求的方程;

    (2)設(shè)過(guò)點(diǎn)的動(dòng)直線相交于兩點(diǎn),當(dāng)的面積最大時(shí),求的方程.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】(本題滿分12分)已知,函數(shù)

    )若,求曲線在點(diǎn)處的切線方程.

    )若,求在閉區(qū)間上的最小值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】過(guò)直角坐標(biāo)平面xOy中的拋物線y2=2px(p>0)的焦點(diǎn)F作一條傾斜角為的直線與拋物線相交于A,B兩點(diǎn).

    (1)用p表示線段AB的長(zhǎng);

    (2)若,求這個(gè)拋物線的方程.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】已知F1,F2為橢圓C: 的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有.

    (1)求橢圓C的標(biāo)準(zhǔn)方程;

    (2)圓O是以F1,F2為直徑的圓,直線l: y =k x + m與圓O相切,并與橢圓C交于不同的兩點(diǎn)A,B,若,求k的值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時(shí)間(x個(gè)月)和市場(chǎng)占有率(y%)的幾組相關(guān)對(duì)應(yīng)數(shù)據(jù):

    x

    1

    2

    3

    4

    5

    y

    0.02

    0.05

    0.1

    0.15

    0.18

    (1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

    (2)根據(jù)上述回歸方程,分析該款旗艦機(jī)型市場(chǎng)占有率的變化趨勢(shì),并預(yù)測(cè)自上市起經(jīng)過(guò)多少個(gè)月,該款旗艦機(jī)型市場(chǎng)占有率能超過(guò)0.5%(精確到月)

    附: , .

    查看答案和解析>>

    同步練習(xí)冊(cè)答案