已知定義在R上的奇函數(shù),f(x)滿(mǎn)足f(x+2)=-f(x),則f(6)的值為
( ).
A.-1 B.0 C.1 D.2
B 解析 (構(gòu)造法)構(gòu)造函數(shù)f(x)=sin x,則有f(x+2)=sin=-sin x=-f(x),所以f(x)=sin x是一個(gè)滿(mǎn)足條件的函數(shù),所以f(6)=sin 3π=0,故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)y=f(x)的值域是[,3],則函數(shù)F(x)=f(x)+的值域是( )
A.[,3] B.[2,]
C.[,] D.[3,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有定義,對(duì)于給定的正數(shù)K,定義函數(shù)fK(x)=取函數(shù)f(x)=2-|x|,當(dāng)K=時(shí),函數(shù)fK(x)的單調(diào)遞增區(qū)間為( ).
A.(-∞,0) B.(0,+∞)
C.(-∞,-1) D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(x)=(x≠a).
(1)若a=-2,試證f(x)在(-∞,-2)內(nèi)單調(diào)遞增;
(2)若a>0且f(x)在(1,+∞)內(nèi)單調(diào)遞減,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(x)是R上最小正周期為2的周期函數(shù),且當(dāng)0≤x<2時(shí),f(x)=x3-x,則函數(shù)y=f(x)的圖象在區(qū)間[0,6]上與x軸的交點(diǎn)的個(gè)數(shù)為( ).
A.6 B.7 C.8 D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)對(duì)任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0時(shí),f(x)<0,f(1)=-2.
(1)求證f(x)是奇函數(shù);
(2)求f(x)在[-3,3]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知二次函數(shù)f(x)有兩個(gè)零點(diǎn)0和-2,且f(x)最小值是-1,函數(shù)g(x)與f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
(1)求f(x)和g(x)的解析式;
(2)若h(x)=f(x)-λg(x)在區(qū)間[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
①f(x2)-f(x1)>x2-x1;
②x2f(x1)>x1f(x2);
③<f.
其中正確結(jié)論的序號(hào)是________(把所有正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com