【題目】如圖,直線和拋物線相交于不同兩點(diǎn)AB.

I)求實(shí)數(shù)的取值范圍;

)設(shè)AB的中點(diǎn)為M,拋物線C的焦點(diǎn)為F.以MF為直徑的圓與直線l相交于另一點(diǎn)N,且滿足,求直線l的方程.

【答案】I

【解析】

I)把直線方程與拋物線方程聯(lián)立,消去得到一個(gè)一元二次方程,只要判別式大于零即可,解不等式求出實(shí)數(shù)的取值范圍;

)方法1:由,根據(jù)直徑所對(duì)的圓周角是直角,可得,

設(shè),根據(jù)(I)中得到一元二次方程,利用根與系數(shù)的關(guān)系,可以求出M的坐標(biāo),再求出點(diǎn)N的坐標(biāo),分別求出的長(zhǎng)度,最后利用

可以求出的值,最后求出直線方程;

方法2:由,根據(jù)直徑所對(duì)的圓周角是直角,可得,結(jié)合方法1,可以求出的值,最后求出直線方程;

方法3:設(shè)直線l的方向向量為,求出平面向量的加法法則,可以求出,求出、的長(zhǎng)度,最后利用可以求出的值,最后求出直線方程.

解:(I)由,消去,,

解得.故

(Ⅱ)方法1等價(jià)于.

設(shè),

,

所以,

又直線,與聯(lián)立,

解得,所以

.

,則由,

,解得,

所以直線的方程為.

方法2等價(jià)于,,

由方法1,

所以,即,

化簡(jiǎn)得,得,.

所以直線l的方程為.

方法3:設(shè)直線l的方向向量為

,

,

,

,得,

所以直線l的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人射擊,甲射擊一次中靶的概率是,乙射擊一次中靶的概率是,且是方程的兩個(gè)實(shí)根,已知甲射擊5次,中靶次數(shù)的方差是.

1)求,的值;

2)若兩人各射擊2次,至少中靶3次就算完成目標(biāo),則完成目標(biāo)概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

知圓錐曲線參數(shù)和定點(diǎn),、此圓錐曲線的左、右焦點(diǎn),以原點(diǎn)點(diǎn),以的正半軸為極軸建立極坐標(biāo)系.

1直線直角坐標(biāo)方程;

2經(jīng)過點(diǎn)與直線直的直線此圓錐曲線于、兩點(diǎn),求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:

①函數(shù)的最大值為1;

“若,則”的逆命題為真命題;

③若為銳角三角形,則有;

④“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.

其中所有正確命題的序號(hào)為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知矩形中,,,分別在上,且,,沿將四邊形折成四邊形,使點(diǎn)在平面上的射影在直線上.

1)求證:平面;

2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個(gè)階段后得到銷售單價(jià)和月銷售量之間的一組數(shù)據(jù),如下表所示:

銷售單價(jià)(元)

9

9.5

10

10.5

11

月銷售量(萬件)

11

10

8

6

5

(I)根據(jù)統(tǒng)計(jì)數(shù)據(jù),求出關(guān)于的回歸直線方程,并預(yù)測(cè)月銷售量不低于12萬件時(shí)銷售單價(jià)的最大值;

(II)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬件,則生產(chǎn)企業(yè)獎(jiǎng)勵(lì)網(wǎng)店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產(chǎn)企業(yè)獎(jiǎng)勵(lì)網(wǎng)店5000元;若月銷售量低于8萬件,則沒有獎(jiǎng)勵(lì). 現(xiàn)用樣本估計(jì)總體,從上述5個(gè)銷售單價(jià)中任選2個(gè)銷售單價(jià),求抽到的產(chǎn)品含有月銷售量不低于10萬件的概率.

參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為. 參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB=8,點(diǎn)C在線段AB上,且AC=2,P為線段CB上一動(dòng)點(diǎn),點(diǎn)A繞著C旋轉(zhuǎn)后與點(diǎn)B繞點(diǎn)P旋轉(zhuǎn)后重合于點(diǎn)D,設(shè)CP=x,CPD的面積為f(x).求f(x)的最大值(  ).

A.     B. 2

C.3     D.

查看答案和解析>>

同步練習(xí)冊(cè)答案