【題目】(本小題滿分12分)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線.
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點(diǎn),當(dāng)圓的半徑最長時(shí),求.
【答案】依題意,圓M的圓心,圓N的圓心,故,由橢圓定理可知,曲線C是以M、N為左右焦點(diǎn)的橢圓(左頂點(diǎn)除外),其方程為;
(2)對(duì)于曲線C上任意一點(diǎn),由于(R為圓P的半徑),所以R=2,所以當(dāng)圓P的半徑最長時(shí),其方程為;
若直線l垂直于x軸,易得;
若直線l不垂直于x軸,設(shè)l與x軸的交點(diǎn)為Q,則,解得,故直線l:;有l與圓M相切得,解得;當(dāng)時(shí),直線,聯(lián)立直線與橢圓的方程解得;同理,當(dāng)時(shí),.
【解析】
(1)根據(jù)橢圓的定義求出方程;(2)先確定當(dāng)圓P的半徑最長時(shí),其方程為,再對(duì)直線l進(jìn)行分類討論求弦長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從一批蘋果中,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布表如下:
(1)根據(jù)頻數(shù)分布表計(jì)算蘋果的重量在的頻率;
(2)用分層抽樣的方法從重量在和的蘋果中共抽取4個(gè),其中重量在的有幾個(gè)?
(3)在(2)中抽出的4個(gè)蘋果中,任取2個(gè),寫出所有可能的結(jié)果,并求重量在和中各有1個(gè)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自新冠肺炎疫情發(fā)生以來,某社區(qū)積極防范,并利用網(wǎng)絡(luò)對(duì)本社區(qū)居民進(jìn)行新冠肺炎防御知識(shí)講座,為了解該社區(qū)居民對(duì)防御知識(shí)的掌握情況,隨機(jī)調(diào)查了該社區(qū)100人,統(tǒng)計(jì)得到如下列聯(lián)表:
(1)請根據(jù)2x2列聯(lián)表,判斷是否有95%的把握認(rèn)為防御知識(shí)掌握情況與年齡有關(guān);
(2)為了進(jìn)一步提高該社區(qū)的防御意識(shí),該社區(qū)采用分層抽樣的方法,從調(diào)查的完全掌握的居民中抽取10人,再從這10人中隨機(jī)選取2人作為下一次講座的講解員,設(shè)X為這2人中年齡小于或等于50歲的人數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(),已知在有且僅有3個(gè)零點(diǎn),下列結(jié)論正確的是( )
A.在上存在,,滿足
B.在有且僅有1個(gè)最小值點(diǎn)
C.在單調(diào)遞增
D.的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年4月8日零時(shí)正式解除離漢通道管控,這標(biāo)志著封城76天的武漢打開城門了.在疫情防控常態(tài)下,武漢市有序復(fù)工復(fù)產(chǎn)復(fù)市,但是仍然不能麻痹大意,仍然要保持警惕,嚴(yán)密防范、慎終如始.為科學(xué)合理地做好小區(qū)管理工作,結(jié)合復(fù)工復(fù)產(chǎn)復(fù)市的實(shí)際需要,某小區(qū)物業(yè)提供了,兩種小區(qū)管理方案,為了了解哪一種方案最為合理有效,物業(yè)隨機(jī)調(diào)查了50名男業(yè)主和50名女業(yè)主,每位業(yè)主對(duì),兩種小區(qū)管理方案進(jìn)行了投票(只能投給一種方案),得到下面的列聯(lián)表:
方案 | 方案 | |
男業(yè)主 | 35 | 15 |
女業(yè)主 | 25 | 25 |
(1)分別估計(jì),方案獲得業(yè)主投票的概率;
(2)判斷能否有95%的把握認(rèn)為投票選取管理方案與性別有關(guān).
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,,其中e為自然對(duì)數(shù)的底數(shù)().
(1)當(dāng)時(shí),求在處的切線方程;
(2)設(shè),求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的學(xué)生積極參加體育鍛煉,其中有96%的學(xué)生喜歡足球或游泳,60%的學(xué)生喜歡足球,82%的學(xué)生喜歡游泳,則該中學(xué)既喜歡足球又喜歡游泳的學(xué)生數(shù)占該校學(xué)生總數(shù)的比例是( )
A.62%B.56%
C.46%D.42%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地準(zhǔn)備在山谷中建一座橋梁,橋址位置的豎直截面圖如圖所示:谷底O在水平線MN上,橋AB與MN平行,為鉛垂線(在AB上).經(jīng)測量,左側(cè)曲線AO上任一點(diǎn)D到MN的距離(米)與D到的距離a(米)之間滿足關(guān)系式;右側(cè)曲線BO上任一點(diǎn)F到MN的距離(米)與F到的距離b(米)之間滿足關(guān)系式.已知點(diǎn)B到的距離為40米.
(1)求橋AB的長度;
(2)計(jì)劃在谷底兩側(cè)建造平行于的橋墩CD和EF,且CE為80米,其中C,E在AB上(不包括端點(diǎn)).橋墩EF每米造價(jià)k(萬元)、橋墩CD每米造價(jià)(萬元)(k>0).問為多少米時(shí),橋墩CD與EF的總造價(jià)最低?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com