已知函數(shù).
(1)當時,求的極值;(2)當時,討論的單調性;
(3)若對任意的恒有成立,求實數(shù)的取值范圍.
(1)極小值,無極大值;(2)參考解析;(3)
【解析】
試題分析:(1)當時.函數(shù)f(x)是一個對數(shù)函數(shù)和分式的和的形式.通過求導可以求出函數(shù)的有極小值,但沒極大值.
(2)當時.通過求導可得導函數(shù)的兩個零點,在定義域上分別對兩個零點的大小討論分類.從而得到函數(shù)的單調區(qū)間.
(3)由對任意的恒有成立.首先要求出函數(shù)f(x)在[1,3]上且的最大值.從而對于任意使得恒成立即可.再通過分離變量即可得到結論.本題前兩小題較為基礎但第二小題的分類做到清晰不容易,第三小題難度較大.
試題解析:(1)當時, 1分
由,解得. 2分
∴在上是減函數(shù),在上是增函數(shù). 3分
∴的極小值為,無極大值. 4分
(2). 6分
①當時,在和上是減函數(shù),在上是增函數(shù); 7分
②當時,在上是減函數(shù); 8分
③當時,在和上是減函數(shù),在上是增函數(shù). 9分
(3)當時,由(2)可知在上是減函數(shù),
∴. 10分
由對任意的恒成立,
∴ 11分
即對任意恒成立,
即對任意恒成立, 12分
由于當時,,∴. 14分
考點:1.函數(shù)的極值問題.2.含參函數(shù)的單調性.3.不等式的恒成立問題.4.函數(shù)的最值問題.
科目:高中數(shù)學 來源:2013-2014學年廣東省深圳市寶安區(qū)高三上學期調研考試文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),.
(1)當為何值時,取得最大值,并求出其最大值;
(2)若,,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年福建省高三5月高考三輪模擬文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),
(1)當且時,證明:對,;
(2)若,且存在單調遞減區(qū)間,求的取值范圍;
(3)數(shù)列,若存在常數(shù),,都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江西省高三第三次模擬考試理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù) ,.
(1)當 時,求函數(shù) 的最小值;
(2)當 時,討論函數(shù) 的單調性;
(3)是否存在實數(shù),對任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com