如圖,平面內(nèi)的兩條相交直線將平面分割成四個(gè)區(qū)域(不包含邊界),向量分別為的一個(gè)方向向量,若且點(diǎn)P落在第區(qū)域,則實(shí)數(shù)滿足

   A.    B.     C.     D.

D.


解析:

顯然,才能保證P在第二象限.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:四川省成都外國(guó)語(yǔ)學(xué)校2012屆高三12月月考數(shù)學(xué)試題 題型:013

如圖:l1,l2,l3l4是同一平面內(nèi)的四條平行直線,且每相領(lǐng)的兩條平行直線間的距離都是h,正方形ABCD的四個(gè)頂點(diǎn)分別在這四條直線上,

且正方形的邊長(zhǎng)為5,則h=

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省成都外國(guó)語(yǔ)學(xué)校2012屆高三第三次月考數(shù)學(xué)試題 題型:013

如圖:l1,l2,l3l4是同一平面內(nèi)的四條平行直線,且每相領(lǐng)的兩條平行直線間的距離都是h,正方形ABCD的四個(gè)頂點(diǎn)分別在這四條直線上,且正方形的邊長(zhǎng)為5,則h=

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題

如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)證明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

【解析】(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912413079631221/SYS201207091242012651351203_ST.files/image002.png">

是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)設(shè)AC和BD相交于點(diǎn)O,連接PO,由(Ⅰ)知,BD平面PAC,

所以是直線PD和平面PAC所成的角,從而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因?yàn)樗倪呅蜛BCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積

在等腰三角形AOD中,

所以

故四棱錐的體積為.

【點(diǎn)評(píng)】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計(jì)算.第一問(wèn)只要證明BD平面PAC即可,第二問(wèn)由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省月考題 題型:單選題

如圖:l1,l2,l3,l4是同一平面內(nèi)的四條平行直線,且每相領(lǐng)的兩條平行直線間的距離都是h,正方形ABCD的四個(gè)頂點(diǎn)分別在這四條直線上,且正方形的邊長(zhǎng)為5,則h=

[     ]

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案