如圖,平面內(nèi)的兩條相交直線將平面分割成四個(gè)區(qū)域(不包含邊界),向量分別為的一個(gè)方向向量,若且點(diǎn)P落在第區(qū)域,則實(shí)數(shù)滿足
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:四川省成都外國(guó)語(yǔ)學(xué)校2012屆高三12月月考數(shù)學(xué)試題 題型:013
如圖:l1,l2,l3,l4是同一平面內(nèi)的四條平行直線,且每相領(lǐng)的兩條平行直線間的距離都是h,正方形ABCD的四個(gè)頂點(diǎn)分別在這四條直線上,
且正方形的邊長(zhǎng)為5,則h=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:四川省成都外國(guó)語(yǔ)學(xué)校2012屆高三第三次月考數(shù)學(xué)試題 題型:013
如圖:l1,l2,l3,l4是同一平面內(nèi)的四條平行直線,且每相領(lǐng)的兩條平行直線間的距離都是h,正方形ABCD的四個(gè)頂點(diǎn)分別在這四條直線上,且正方形的邊長(zhǎng)為5,則h=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
【解析】(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912413079631221/SYS201207091242012651351203_ST.files/image002.png">
又是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,
而平面PAC,所以.
(Ⅱ)設(shè)AC和BD相交于點(diǎn)O,連接PO,由(Ⅰ)知,BD平面PAC,
所以是直線PD和平面PAC所成的角,從而.
由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因?yàn)樗倪呅蜛BCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積
在等腰三角形AOD中,
所以
故四棱錐的體積為.
【點(diǎn)評(píng)】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計(jì)算.第一問(wèn)只要證明BD平面PAC即可,第二問(wèn)由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:四川省月考題 題型:單選題
[ ]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com