在△ABC中,已知三邊a、b、c滿足(a+b+c)(a+b-c)=3ab,則∠C=(  )
A、30°B、60°C、120°D、150°
分析:先將(a+b+c)(a+b-c)=3ab展開化簡(jiǎn),再由余弦定理可求出角C的余弦值,從而得到答案.
解答:解:∵(a+b+c)(a+b-c)=3ab,
∴(a+b)2-c2=3ab
∴a2+b2-c2=ab
由余弦定理得:
cosC=
a2+b2-c2
2ab
=
1
2

C=60°
故選B.
點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知三內(nèi)角∠A、∠B、∠C成等差數(shù)列,其對(duì)邊分別為a、b、c,且c-a等于邊AC上的高h(yuǎn).則sin
C-A
2
=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知三個(gè)內(nèi)角A、B、C的對(duì)邊分別是a、b、c,向量
m
=(a,b),
n
=(cos(2π-B),sin(
π
2
+A)),若a≠b且
m
n
,
(Ⅰ)試求內(nèi)角C的大小;
(Ⅱ)若a=6,b=8,△ABC的外接圓圓心為O,點(diǎn)P位于劣弧
AC
上,∠PAB=60°,求四邊形ABCP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(必修5) 2009-2010學(xué)年 第10期 總第166期 北師大課標(biāo)版(必修5) 題型:013

在△ABC中,已知三個(gè)頂點(diǎn)A(2,4)B(1,2)C(1,0),點(diǎn)P(x,y)在△ABC內(nèi)部及邊界運(yùn)動(dòng),則zxy的最大值為

[  ]
A.

1

B.

3

C.

1

D.

3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

在△ABC中,已知三內(nèi)角AB、C滿足關(guān)系式

(1)求證:任意變換A、B、C的位置y的值不變.

(2)y最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上杭一中、武平一中、長(zhǎng)汀一中、漳平一中2006-2007學(xué)年第一學(xué)期高三期末考數(shù)學(xué)試題(文科) 題型:022

在△ABC中,已知三內(nèi)角A、B、C順次成等差數(shù)列,則 的值是________

查看答案和解析>>

同步練習(xí)冊(cè)答案