如圖所示,四棱錐P-ABCD的底面ABCD為一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中點.
(1)求證:BE∥平面PAD;
(2)若BE⊥平面PCD,求平面EBD與平面BDC夾角的余弦值.
(1)見解析(2)
【解析】設AB=a,PA=b,如圖所示,建立空間直角坐標系,則A(0,0,0),B(a,0,0),P(0,0,b),C(2a,2a,0),D(0,2a,0),E .
(1)證明:=,=(0,2a,0),=(0,0,b),所以=+,又BE?平面PAD,AD?平面PAD,AP?平面PAD,故BE∥平面PAD.
(2)∵BE⊥平面PCD,∴BE⊥PC,即·=0,
=(2a,2a,-b),∴·=2a2-=0,即b=2a.
在平面BDE和平面BDC中,=(0,a,a),=(-a,2a,0),=(a,2a,0),
所以平面BDE的一個法向量為n1=(2,1,-1),平面BDC的一個法向量為n2=(0,0,1).
cos〈n1,n2〉=-,所以平面EBD與平面BDC夾角的余弦值為.
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題1第2課時練習卷(解析版) 題型:選擇題
定義在R上的函數(shù)的圖象關于點成中心對稱,且對任意的實數(shù)x都有f(x)=-f,f(-1)=1,f(0)=-2,則f(1)+f(2)+…+f(2013)=( )
A.0 B.-2
C.1 D.-4
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學理復習方案二輪作業(yè)手冊新課標·通用版專題六練習卷(解析版) 題型:填空題
橢圓Γ:=1(a>b>0)的左、右焦點分別為F1,F2,焦距為2c.若直線y=(x+c)與橢圓Γ的一個交點M滿足∠MF1F2=2∠MF2F1,則該橢圓的離心率等于__________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學理復習方案二輪作業(yè)手冊新課標·通用版專題八練習卷(解析版) 題型:填空題
已知cos x= (x∈R),則cosx-=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學理復習方案二輪作業(yè)手冊新課標·通用版專題八練習卷(解析版) 題型:選擇題
“φ=π”是“曲線y=sin(2x+φ)過坐標原點”的( )
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學理復習方案二輪作業(yè)手冊新課標·通用版專題五練習卷(解析版) 題型:選擇題
已知Rt△ABC,其三邊分別為a,b,c(a>b>c).分別以三角形的邊a,b,c所在直線為軸,其余各邊旋轉(zhuǎn)一周形成的曲面圍成三個幾何體,其表面積和體積分別為S1,S2,S3和V1,V2,V3.則它們的大小關系為( )
A.S1>S2>S3,V1>V2>V3
B.S1<S2<S3,V1<V2<V3
C.S1>S2>S3,V1=V2=V3
D.S1<S2<S3,V1=V2=V3
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學理復習方案二輪作業(yè)手冊新課標·通用版專題五練習卷(解析版) 題型:選擇題
設m,n是兩條不同的直線,α,β是兩個不同的平面.則下列結(jié)論中正確的是( )
A.若m∥α,n∥α,則m∥n
B.若m∥α,m∥β,則α∥β
C.若m∥n,m⊥α,則n⊥α
D.若m∥α,α⊥β,則m⊥β
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學理復習方案二輪作業(yè)手冊新課標·通用版專題三練習卷(解析版) 題型:解答題
某旅游景點有一處山峰,游客需從景點入口A處向下沿坡角為α的一條小路行進a百米后到達山腳B處,然后沿坡角為β的山路向上行進b百米后到達山腰C處,這時回頭望向景點入口A處俯角為θ,由于山勢變陡到達山峰D坡角為γ,然后繼續(xù)向上行進c百米終于到達山峰D處,游覽風景后,此游客打算乘坐由山峰D直達入口A的纜車下山結(jié)束行程,如圖所示,假設A,B,C,D四個點在同一豎直平面.
(1)求B,D兩點的海拔落差h;
(2)求AD的長
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學理復習方案二輪作業(yè)手冊新課標·通用版專題一練習卷(解析版) 題型:選擇題
已知集合M={x|x2-5x<0},N={x|p<x<6},若M∩N={x|2<x<q},則p+q等于( )
A.6 B.7 C.8 D.9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com