拋物線頂點在原點,它的準線過雙曲線=1的一個焦點,且與雙曲線實軸垂直,已知拋物線與雙曲線的交點為(,),求拋物線與雙曲線的方程.

解析:∵拋物線與雙曲線的交點為(,)且拋物線的焦點在x軸上,∴拋物線的方程可設為y2=2px.

將(,)代入,得2p=4.

∴拋物線的方程為y2=4x.

∵雙曲線的一個焦點為拋物線的焦點,∴c=1.                    ①

又點(,)在雙曲線上,∴=1.                   ②

由①②可得

∴雙曲線的方程為4x2-=1.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

拋物線頂點在原點,它的準線過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點,并與雙曲線實軸垂直,已知拋物線與雙曲線的一個交點為(
3
2
6
),求拋物線與雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省深圳市高級中學高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

拋物線頂點在原點,它的準線過雙曲線-=1(a>0,b>0)的一個焦點,并與雙曲線實軸垂直,已知拋物線與雙曲線的一個交點為(,),求拋物線與雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省深圳市高級中學等三校高二(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

拋物線頂點在原點,它的準線過雙曲線-=1(a>0,b>0)的一個焦點,并與雙曲線實軸垂直,已知拋物線與雙曲線的一個交點為(,),求拋物線與雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪復習鞏固與練習:拋物線(解析版) 題型:解答題

拋物線頂點在原點,它的準線過雙曲線-=1(a>0,b>0)的一個焦點,并與雙曲線實軸垂直,已知拋物線與雙曲線的一個交點為(,),求拋物線與雙曲線方程.

查看答案和解析>>

同步練習冊答案