【題目】某貨輪勻速行駛在相距海里的甲、乙兩地間運(yùn)輸貨物,運(yùn)輸成本由燃料費(fèi)用和其他費(fèi)用組成.已知該貨輪每小時(shí)的燃料費(fèi)用與其航行速度的平方成正比(比例系數(shù)為
),其他費(fèi)用為每小時(shí)
元,且該貨輪的最大航行速度為
海里/小時(shí).
(1)請(qǐng)將從甲地到乙地的運(yùn)輸成本(元)表示為航行速度
(海里/小時(shí))的函數(shù);
(2)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?
【答案】(1);(2)
.
【解析】試題分析:(1)運(yùn)輸成本由燃料費(fèi)用和其他費(fèi)用組成.每小時(shí)的燃料費(fèi)用為, 其他費(fèi)用為每小時(shí)800元,一共花費(fèi)
小時(shí),注意列定義域,(2)根據(jù)基本不等式求最值,注意等于號(hào)取法.
試題解析:解:(1)由題意,每小時(shí)的燃料費(fèi)用為,從甲地到乙地所用的時(shí)間為
小時(shí),則從甲地到乙地的運(yùn)輸成本
,
故所求的函數(shù)為
.
(2)由(1)得
,
當(dāng)且僅當(dāng),即
時(shí)取等號(hào).
故當(dāng)貨輪航行速度為40海里/小時(shí)時(shí),能使該貨輪運(yùn)輸成本最少.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= sin2x+2cos2x+m在區(qū)間[0,
]上的最大值為6,求常數(shù)m的值及此函數(shù)當(dāng)x∈R時(shí)的最小值,并求相應(yīng)的x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
)的離心率為
,
、
分別是它的左、右焦點(diǎn),且存在直線
,使
、
關(guān)于
的對(duì)稱點(diǎn)恰好是圓
:
(
,
)的一條直徑的兩個(gè)端點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與拋物線
(
)相交于
、
兩點(diǎn),射線
、
與橢圓
分別相交于點(diǎn)
、
.試探究:是否存在數(shù)集
,當(dāng)且僅當(dāng)
時(shí),總存在
,使點(diǎn)
在以線段
為直徑的圓內(nèi)?若存在,求出數(shù)集
;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
,
為參數(shù)),在以
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線
是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線
上的點(diǎn)
對(duì)應(yīng)的參數(shù)
,射線
與曲線
交于點(diǎn)
.
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn),
在曲線
上,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ) 圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過點(diǎn)
,若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng) 時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù) 的圖象,只要將y=sinx(x∈R)的圖象上所有的點(diǎn)( )
A.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變
B.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變
D.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)一動(dòng)點(diǎn)與兩定點(diǎn)
和
連線的斜率之積等于
.
(Ⅰ)求動(dòng)點(diǎn)的軌跡
的方程;
(Ⅱ)設(shè)直線:
(
)與軌跡
交于
、
兩點(diǎn),線段
的垂直平分線交
軸于點(diǎn)
,當(dāng)
變化時(shí),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列向量組中,可以把向量 =(3,2)表示出來的是( )
A. =(0,0),
=(1,2)
B. =(﹣1,2),
=(5,﹣2)
C. =(3,5),
=(6,10)
D. =(2,﹣3),
=(﹣2,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com