精英家教網 > 高中數學 > 題目詳情

12.橢圓的焦點為,點在橢圓上,若,則_________;的小大為____________.

    


解析:

由橢圓定義有,

.

由余弦定理得,∴.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

橢圓C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點.
(Ⅰ)若橢圓的離心率e=
3
2
,直線l過點M(b,0),且
OA
OB
=-
12
5
,求橢圓C的方程;
(Ⅱ)直線l過橢圓的右焦點F,設向量
OP
=λ(
OA
+
OB
)(λ>0),若點P在橢C上,λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,F1,F2為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率e=
3
2
S△DEF2=1-
3
2
.若點M(x0,y0)在橢圓C上,則點N(
x0
a
,
y0
b
)稱為點M的一個“橢點”.直線l與橢圓交于A,B兩點,A,B兩點的“橢點”分別為P,Q,已知以PQ為直徑的圓經過坐標原點O.
(1)求橢圓C的標準方程;
(2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:中學教材標準學案 數學 高二上冊 題型:044

解答題

已知橢圓=1的焦點為F1、F2,能否在x軸下方的橢圓弧上找到一點M,使M到下準線的距離|MN|等于點M到焦點F1、F2的距離的比例中項?若存在,求出M點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:2013屆江西省高三第四次月考理科數學試卷(解析版) 題型:填空題

已知橢圓的左焦點,為坐標原點,點在橢圓上,點在橢

圓的右準線上,若,則橢圓的離心率為  

 

查看答案和解析>>

同步練習冊答案