已知函數(shù)數(shù)學(xué)公式為常數(shù)).
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)若數(shù)學(xué)公式時,f(x)的最小值為-2,求a的值.

解:(1)=2sin2xcos+cos2x+a=sin2x+cos2x+a=2sin(2x+)+a
∴T==π;
(2)令≤2x+,可得≤x≤(k∈Z)
∴函數(shù)的單調(diào)遞增區(qū)間為[](k∈Z);
(3)∵,∴2x+∈[,]
∴sin(2x+)∈[-,1]
∴2sin(2x+)+a∈[-1+a,2+a]
∵f(x)的最小值為-2,
∴-1+a=-2,∴a=-1.
分析:(1)先利用和角、差角的正弦公式,再利用輔助角公式化簡函數(shù),即可求函數(shù)的最小正周期;
(2)利用正弦函數(shù)的單調(diào)遞增區(qū)間,可求函數(shù)的單調(diào)遞增區(qū)間;
(3)先確定時,f(x)的值域,再利用f(x)的最小值為-2,即可求a的值.
點評:本題考查三角函數(shù)的化簡,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=xf'(x),其中f'(x)為f(x)的導(dǎo)函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市誠賢中學(xué)高三(上)第二次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=xf'(x),其中f'(x)為f(x)的導(dǎo)函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省數(shù)學(xué)選修1-2模塊考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)為常數(shù))

(1)若上單調(diào)遞增,且

(2)若f(x)在x=1和x=3處取得極值,且在x∈[-6,6]時,函數(shù)的圖象在直線

的下方,求c的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆福建省泉州市高三上學(xué)期期中文科數(shù)學(xué)試卷 題型:解答題

已知函數(shù).(為常數(shù))

(1)當(dāng)時,求函數(shù)的最小值;

(2)求函數(shù)上的最值;

(3)試證明對任意的都有

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本小題14分)已知函數(shù)為常數(shù).

(1)求函數(shù)的定義域;

(2)若時, 對于比較的大小;

(3)若對任意,不等式恒成立,求實數(shù)的值.

 

查看答案和解析>>

同步練習(xí)冊答案