【題目】已知函數(shù)
(1)若,解不等式;
(2)若不等式對一切實數(shù)恒成立,求實數(shù)的取值范圍.
【答案】(1)(2)
【解析】
試題分析:(1)運用絕對值的定義,去絕對值可得或,解不等式即可得到所求解集;(2)把不等式f(x)≥2x-3對一切實數(shù)x∈R恒成立轉(zhuǎn)化為函數(shù)g(x)=f(x)-(2x-3)≥0對一切實數(shù)x∈R恒成立.然后對a進行分類討論,利用函數(shù)單調(diào)性求得a的范圍,取并集后得答案
試題解析:(1)(5分)
(2)
不等式對一切實數(shù)恒成立,等價于不等式對一切實數(shù)恒成立
①當(dāng)時,當(dāng)時,單調(diào)遞增,其值域為,不符合題意,舍去;(7分)
②當(dāng)時,成立;(9分)
③當(dāng)時,
當(dāng)時,單調(diào)遞減,其值域為,
由于,成立。
當(dāng)時,由,知,在處取得最小值,
令,解得
又(15分)
綜上,(16分)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:①三點確定一個平面;②一條直線和一個點確定一個平面;③若四點不共面,則每三點一定不共線;④三條平行直線確定三個平面.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于下列程序:
a=input(“a=”);
if a>5
b=4;
else
if a<3
b=5;
else
b=9;
print(%io(2),a,b);
end
end
如果在運行時,輸入2,那么輸出的結(jié)果是( )
A. 2,5 B. 2,4
C. 2,3 D. 2,9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).
(1)求的解析式及單調(diào)遞減區(qū)間;
(2)是否存在常數(shù),使得對于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)M={x|y=ln(x-1)},N={y|y=x2+1},則有( )
A.M=N B.M∩N=M
C.M∪N=M D.M∪N=R
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2≥4},B={m}.若A∪B=A,則m的取值范圍是( )
A. (-∞,-2) B. [2,+∞)
C. [-2,2] D. (-∞,-2]∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射手射擊所得環(huán)數(shù)ξ的分布列如下:
ξ | 7 | 8 | 9 | 10 |
P | x | 0.1 | 0.3 | y |
已知ξ的數(shù)學(xué)期望E(ξ)=8.9,則y的值為( ).
A. 0.2 B. 0.4 C. 0.6 D. 0.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)每個都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是( )
A. 眾數(shù) B. 平均數(shù) C. 標(biāo)準(zhǔn)差 D. 中位數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(1,0,2),B(1,-3,1),點M在z軸上且到A、B兩點的距離相等,則點M的坐標(biāo)為
A. (-3,0,0) B. (0,-3,0) C. (0,0,3) D. (0,0,-3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com