設(shè)集合I={1,2,3,4,5,6},選擇集合I的兩個非空子集A和B,要使集合B中最小的數(shù)大于集合A中最大的數(shù),則不同的選擇方法共有
 
種.
考點:計數(shù)原理的應(yīng)用
專題:應(yīng)用題,排列組合
分析:根據(jù)題意,B中最小的數(shù)大于A中最大的數(shù),則集合A、B中沒有相同的元素,且都不是空集,按A、B中元素數(shù)目這和的情況,分5種情況討論,分別計算其選法種數(shù),進而相加可得答案.
解答: 解:集合A、B中沒有相同的元素,且都不是空集,
從6個元素中選出2個元素,有C62=15種選法,小的給A集合,大的給B集合;
從6個元素中選出3個元素,有C63=20種選法,再分成1一個元素一組、2個元素一組,有兩種分法,較小元素的一組給A集合,較大元素的一組的給B集合,共有2×20=40種方法;
從6個元素中選出4個元素,有C64=15種選法,再分成1個元素一組、3三個元素一組;2個元素一組、2個元素一組;3個元素一組、1一個元素一組,共三種分法,較小元素的一組給A集合,較大元素的一組的給B集合,共有3×15=45種方法;
從6個元素中選出5個元素,有C65=6種選法,再分成1個元素一組、4個元素一組;2個元素一組、3個元素一組;3個元素一組、2個元素一組;4個元素一組、1兩個元素一組,有四種分法,較小元素的一組給A集合,較大元素的一組的給B集合,共有6×4=24種方法;
從6個元素中選出6個元素,有C66=1種選法,再分成1個元素一組、5個元素一組;2個元素一組、4個元素一組;3個元素一組、3個元素一組;4個元素一組、2個元素一組;5個元素一組、1兩個元素一組,有五種分法,較小元素的一組給A集合,較大元素的一組的給B集合,共有5種方法;
總計為15+40+45+24+5=129種方法.
故答案為:129.
點評:本題考查排列組合的實際應(yīng)用,本題解題的關(guān)鍵是理解題意,能夠看懂使B中的最小數(shù)大于A中的最大數(shù)的意義,本題是一個難題也是一個易錯題,需要認(rèn)真解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD中,AB⊥AD,CD⊥AD,PA⊥底面ABCD,PA=AD=CD=2AB=2,M為PC的中點.
(I)求證:BM∥平面PAD;
(Ⅱ)求直線PB與平面ABM所成角的正弦值;
(Ⅲ)求二面角M-BC-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,sinθ)(θ∈R),
b
=(
3
,1).
(1)當(dāng)
a
b
時,求tan2θ的值;
(2)求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,滿足bcosC=(2a-c)cosB.
(Ⅰ)求角B的大;
(Ⅱ)設(shè)f(x)=cos(ωx-
B
2
)+sinωx(ω>0),且f(x)的最小正周期為π,求f(x)在區(qū)間[0,
π
2
]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線ρcosθ=2上的點M到圓ρ=2sinθ的切線長的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2ln(3x)+8x,則
lim
△x→∞
f(1-2△x)-f(1)
△x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高一、高二、高三3個年級共有430名學(xué)生,其中高一年級160名,高二年級學(xué)生180名,為了解學(xué)生身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中高二學(xué)生有32人,則該樣本中高三學(xué)生人數(shù)為
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)1979,1005,1231,1688有某些共同點,即每個數(shù)都是首位為1的四位數(shù),且每個四位數(shù)中恰有2個數(shù)字相同,這樣的四位數(shù)共有
 
個(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上是增函數(shù),令a=f(sin
7
),b=f(cos
7
),c=f(tan
7
),那么a,b,c的大小關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊答案