已知i為虛數(shù)單位,如果復(fù)數(shù)z=
2-bi
1+i
的實部和虛部互為相反數(shù),那么實數(shù)b的值為
 
考點:復(fù)數(shù)的基本概念
專題:數(shù)系的擴充和復(fù)數(shù)
分析:化簡復(fù)數(shù)z,求出復(fù)數(shù)的實部與虛部,根據(jù)題意,求出b的值.
解答: 解:∵復(fù)數(shù)z=
2-bi
1+i
=
(2-bi)(1-i)
(1+i)(1-i)
=
2-b
2
-
b+2
2
i,
又它的實部和虛部互為相反數(shù),
2-b
2
+(-
b+2
2
)=0,
∴b=0.
故答案為:0.
點評:本題考查了復(fù)數(shù)的化簡與運算問題,解題時應(yīng)按照復(fù)數(shù)的概念以及運算法則,進行計算即可,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-mx+m,m∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≤0在(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,證明:對任意的0<a<b,
f(b)-f(a)
b-a
1
a
-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

照某學(xué)者的理論,假設(shè)一個人生產(chǎn)某產(chǎn)品單件成本為a元,如果他賣出該產(chǎn)品的單價為 m元,則他的滿意度為
m
m+a
;如果他買進該產(chǎn)品的單價為n元,則他的滿意度為
n
n+a
.如果一個人對兩種交易(賣出或買進)的滿意度分別為h1和h2,則他對這兩種交易的綜合滿意度為
h1h2

 現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價分別為mA元和mB元,甲買進A與賣出B的綜合滿意度為h,乙賣出A與買進B的綜合滿意度為h
(1)求h和h關(guān)于mA、mB的表達式;當(dāng)mA=
3
5
mB時,求證:h=h;
(2)設(shè)mA=
3
5
mB,當(dāng)mA、mB分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?
(3)記(2)中最大的綜合滿意度為h0,試問能否適當(dāng)選取mA、mB的值,使得h≥h0和h≥h0 同時成立,但等號不同時成立?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=3cosα,則(sinα+cosα)2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=2n-an,則數(shù)列{an}的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①已知鈍二面角α-l-β的大小為θ,
u
,
v
分別是平面α,β的法向量則cosθ=-|cos(
u
,
v
)|,
②圓x2+(y+1)2=3繞直線kx-y-1=0旋轉(zhuǎn)一周所得幾何體的體積是4π,
③圓錐底面半徑為
3
,母線長為2,則過圓錐頂點的截面面積的最大值為
3

④已知A,B,C,D四點共面,
OA
=an
OB
-an-1
OC
-
OD
,又?jǐn)?shù)列{an}中,a1=-11,則數(shù)列{an}的前n項和Sn有最小值-36.
正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖的程序框圖,那么輸出的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在集合{(x,y)|
2x+y-3≤0
x+y≥0
x-y≥0
}所表示的平面區(qū)域內(nèi)任取一點M,則點M恰好取自x軸上方的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的個數(shù)是( 。
(1)?x∈N,x3>x2
(2)存在一個四邊形沒有外接圓
(3)每個對數(shù)函數(shù)都是單調(diào)函數(shù)      
(4)任意素數(shù)都是奇數(shù).
A、2B、1C、4D、3

查看答案和解析>>

同步練習(xí)冊答案