6.若點A是不等式組$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,所表示的平面區(qū)域內(nèi)的一個動點,點B是直線y=1上的動點,O為坐標(biāo)原點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$取得最大值時的最優(yōu)解不唯一,則點B的橫坐標(biāo)是1或-2.

分析 由約束條件作出可行域,設(shè)出A,B的坐標(biāo),把向量數(shù)量積轉(zhuǎn)化為線性目標(biāo)函數(shù),結(jié)合$\overrightarrow{OA}$•$\overrightarrow{OB}$取得最大值時的最優(yōu)解不唯一求得B點橫坐標(biāo),則答案可求.

解答 解:由約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$作出可行域如圖,

設(shè)A(x,y),B(a,1),
則z=$\overrightarrow{OA}$•$\overrightarrow{OB}$=ax+y,
要使$\overrightarrow{OA}$•$\overrightarrow{OB}$取得最大值時的最優(yōu)解不唯一,則
-a=-1或-a=2,即a=1或a=-2.
∴點B的橫坐標(biāo)是1或-2.
故答案為:1或-2.

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)命題p:$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$是三個非零向量;命題q:{$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$}為空間的一個基底,則命題p是命題q的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.根據(jù)條件求拋物線的標(biāo)準(zhǔn)方程.
(1)拋物線的頂點在原點,以坐標(biāo)軸為對稱軸,且焦點在直線x+y+2=0上;
(2)拋物線的頂點在原點,焦點是圓x2十y2-4x=0的圓心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計算:
(1)(2$\frac{3}{5}$)0+2-2•(2$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+($\frac{25}{36}$)0.5+$\sqrt{(-2)^{2}}$;
(2)$\frac{1}{2}$1g$\frac{32}{49}$一$\frac{4}{3}$1g$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)A1,A2是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸的兩個端點,P1,P2是垂直于x軸的直線與此橢圓的兩個交點,M為直線A1P1與A2P2的交點,求證:點M的軌跡方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)=sinx-$\frac{1}{2}$x(x$∈[0,\frac{π}{2}]$,則f(x)的值域為( 。
A.[0,$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$]B.[1-$\frac{π}{4}$,$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$]C.[0,$\frac{1}{2}$-$\frac{π}{12}$]D.[1-$\frac{π}{4}$,$\frac{1}{2}$-$\frac{π}{12}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}{\stackrel{3x+y-3≥0}{x-1≤0}}\\{y-3≤0}\end{array}\right.$,則z=3x+5y的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,已知△ABC頂點B(-2,0)和C(2,0),頂點A在橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上,則$\frac{sinB+sinC}{sinA}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x2-2x,g(x)=ax+2(a>0),若對任意x1∈R,都存在x2∈[-2,+∞),使得f(x1)>g(x2),則實數(shù)a的取值范圍是( 。
A.$({\frac{3}{2},+∞})$B.(0,+∞)C.$({0,\frac{3}{2}})$D.$({\frac{3}{2},3})$

查看答案和解析>>

同步練習(xí)冊答案