已知在數(shù)列{an}中,a1=1,an+1=2an(n∈N+),數(shù)列{bn}是公差為3的等差數(shù)列,且b2=a3
(I)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(II)求數(shù)列{an-bn}的前n項(xiàng)和sn

解:(I)∵an+1=2an(n∈N+),a1=1,
∴數(shù)列{an}是公比為2的等比數(shù)列,
∴an=1×2n-1;…3分
∵等差數(shù)列{bn}的公差為3,b2=a3=22=4,
∴bn=b2+(n-2)×3=3n-2…6分
(II)Sn=(a1-b1)+(a2-b2)+…+(an-bn
=(a1+a2+…+an)-(b1+b2+…+bn)…8分
=-…10分
=2n-n2+-1…12分
分析:(I)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可求得數(shù)列{an}的首項(xiàng)與公比、{bn}首項(xiàng)與公差,從而可求其通項(xiàng)公式;
(II)通過(guò)分組求和,即可求得數(shù)列{an-bn}的前n項(xiàng)和sn
點(diǎn)評(píng):本題考查數(shù)列求和,著重考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式與分組求和,考查轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和Sn滿足Sn2=an(Sn-
1
2
)

(Ⅰ) 求Sn的表達(dá)式;
(Ⅱ) 設(shè)bn=
Sn
2n+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在數(shù)列{an}中,a1=7,an+1=
7anan+7
,計(jì)算這個(gè)數(shù)列的前4項(xiàng),并猜想這個(gè)數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在數(shù)列{an}中,an≠0,(n∈N*).求證:“{an}是常數(shù)列”的充要條件是“{an}既是等差數(shù)列又是等比數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•河北區(qū)一模)已知在數(shù)列{an}中,Sn是前n項(xiàng)和,滿足Sn+an=n,(n=1,2,3,…).
(Ⅰ)求a1,a2,a3的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)令bn=(2-n)(an-1)(n=1,2,3,…),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在數(shù)列{an}中,a1=
1
2
,Sn是其前n項(xiàng)和,且Sn=n2an-n(n-1).
(1)證明:數(shù)列{
n+1
n
Sn}
是等差數(shù)列;
(2)令bn=(n+1)(1-an),記數(shù)列{bn}的前n項(xiàng)和為Tn
①求證:當(dāng)n≥2時(shí),Tn2>2(
T2
2
+
T3
3
+…+
Tn
n
)

②)求證:當(dāng)n≥2時(shí),bn+1+bn+2+…+b2n
4
5
-
1
2n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案