【題目】設某地區(qū)鄉(xiāng)居民人民幣儲蓄存款(年底余額)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
時間代號 | 1 | 2 | 3 | 4 | 5 | 6 |
儲蓄存款(千億元) | 3.5 | 5 | 6 | 7 | 8 | 9.5 |
(1)求關于的回歸方程,并預測該地區(qū)2019年的人民幣儲蓄存款(用最簡分數(shù)作答).
(2)在含有一個解釋變量的線性模型中,恰好等于相關系數(shù)的平方,當時,認為線性回歸模型是有效的,請計算并且評價模型的擬合效果(計算結果精確到).
附:
, .
科目:高中數(shù)學 來源: 題型:
【題目】峰谷電是目前在城市居民當中開展的一種電價類別.它是將一天24小時劃分成兩個時間段,把8:00—22:00共14小時稱為峰段,執(zhí)行峰電價,即電價上調(diào);22:00—次日8:00共10個小時稱為谷段,執(zhí)行谷電價,即電價下調(diào).為了進一步了解民眾對峰谷電價的使用情況,從某市一小區(qū)隨機抽取了50 戶住戶進行夏季用電情況調(diào)查,各戶月平均用電量以,,,,,(單位:度)分組的頻率分布直方圖如下圖:
若將小區(qū)月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價的戶數(shù)如下表:
月平均用電量(度) | ||||||
使用峰谷電價的戶數(shù) | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估計所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)()將“一般用戶”和“大用戶”的戶數(shù)填入下面的列聯(lián)表:
一般用戶 | 大用戶 | |
使用峰谷電價的用戶 | ||
不使用峰谷電價的用戶 |
()根據(jù)()中的列聯(lián)表,能否有的把握認為 “用電量的高低”與“使用峰谷電價”有關?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 經(jīng)過點,焦距為.
(1)求橢圓的標準方程;
(2)直線與橢圓交于不同的兩點、,線段的垂直平分線交軸交于點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)當時,求函數(shù)的曲線上點處的切線方程;
(2)當時,求的單調(diào)區(qū)間;
(3)若有兩個極值點, ,其中,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:經(jīng)過點,離心率為.
(1)求橢圓的標準方程;
(2)過坐標原點作直線交橢圓于、兩點,過點作的平行線交橢圓于、兩點.是否存在常數(shù), 滿足?若存在,求出這個常數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過市場調(diào)查,某種商品在銷售中有如下關系:第x(1≤x≤30,x∈N+)天的銷售價格(單位:元/件)為f(x)=第x天的銷售量(單位:件)為g(x)=a-x(a為常數(shù)),且在第20天該商品的銷售收入為1 200元(銷售收入=銷售價格×銷售量).
(1)求a的值,并求第15天該商品的銷售收入;
(2)求在這30天中,該商品日銷售收入y的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),為偶函數(shù),且當時,.記.給出下列關于函數(shù)的說法:①當時,;②函數(shù)為奇函數(shù);③函數(shù)在上為增函數(shù);④函數(shù)的最小值為,無最大值.其中正確的是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線過橢圓的右焦點,拋物線的焦點為橢圓的上頂點,且交橢圓于兩點,點在直線上的射影依次為.
(1)求橢圓的方程;
(2)若直線交軸于點,且,當變化時,證明: 為定值;
(3)當變化時,直線與是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com