【題目】設某地區(qū)鄉(xiāng)居民人民幣儲蓄存款(年底余額如下表

年份

2012

2013

2014

2015

2016

2017

時間代號

1

2

3

4

5

6

儲蓄存款(千億元)

3.5

5

6

7

8

9.5

(1)求關于的回歸方程,并預測該地區(qū)2019年的人民幣儲蓄存款(用最簡分數(shù)作答).

(2)在含有一個解釋變量的線性模型中,恰好等于相關系數(shù)的平方,當時,認為線性回歸模型是有效的,請計算并且評價模型的擬合效果(計算結果精確到).

附:

, .

【答案】(1) , 預測存款為千億元;(2, 線性回歸模型擬合的是很有效的.

【解析】

1)分別求出,,求出相關系數(shù),從而求出回歸方程即可;

2)求出r的值,求出R2,比較即可.

11+2+3+4+5+6,

3.5+5+6+7+8+9.5

,,

故回歸方程為:yx,

2019對應的x8

x8時,y

故預測存款是千億元;

2r0.99699,

R20.9940.8,

故模型的擬合效果有效.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】峰谷電是目前在城市居民當中開展的一種電價類別.它是將一天24小時劃分成兩個時間段,把8:00—22:00共14小時稱為峰段,執(zhí)行峰電價,即電價上調(diào);22:00—次日8:00共10個小時稱為谷段,執(zhí)行谷電價,即電價下調(diào).為了進一步了解民眾對峰谷電價的使用情況,從某市一小區(qū)隨機抽取了50 戶住戶進行夏季用電情況調(diào)查,各戶月平均用電量以,,,,,(單位:度)分組的頻率分布直方圖如下圖:

若將小區(qū)月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價的戶數(shù)如下表:

月平均用電量(度)

使用峰谷電價的戶數(shù)

3

9

13

7

2

1

(1)估計所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)()將“一般用戶”和“大用戶”的戶數(shù)填入下面的列聯(lián)表:

一般用戶

大用戶

使用峰谷電價的用戶

不使用峰谷電價的用戶

()根據(jù)()中的列聯(lián)表,能否有的把握認為 “用電量的高低”與“使用峰谷電價”有關?

0.025

0.010

0.001

5.024

6.635

10.828

附:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為.

(1)求的值;

2)求的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 經(jīng)過點,焦距為.

(1)求橢圓的標準方程;

(2)直線與橢圓交于不同的兩點、,線段的垂直平分線交軸交于點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)當時,求函數(shù)的曲線上點處的切線方程;

(2)當時,求的單調(diào)區(qū)間;

(3)若有兩個極值點, ,其中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為. 

(1)求橢圓的標準方程;

(2)過坐標原點作直線交橢圓、兩點,過點的平行線交橢圓、兩點.是否存在常數(shù), 滿足?若存在,求出這個常數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過市場調(diào)查,某種商品在銷售中有如下關系:x(1≤x≤30,x∈N+)天的銷售價格(單位:/)f(x)=x天的銷售量(單位:)g(x)=a-x(a為常數(shù)),且在第20天該商品的銷售收入為1 200(銷售收入=銷售價格×銷售量).

(1)a的值,并求第15天該商品的銷售收入;

(2)求在這30天中,該商品日銷售收入y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為偶函數(shù),且當時,..給出下列關于函數(shù)的說法:①當時,;②函數(shù)為奇函數(shù);③函數(shù)上為增函數(shù);④函數(shù)的最小值為,無最大值.其中正確的是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過橢圓的右焦點,拋物線的焦點為橢圓的上頂點,且交橢圓兩點,點在直線上的射影依次為.

(1)求橢圓的方程;

(2)若直線軸于點,且,當變化時,證明: 為定值;

(3)當變化時,直線是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.

查看答案和解析>>

同步練習冊答案