12.命題p:?x∈R,函數(shù)$f(x)=2{cos^2}x+\sqrt{3}sin2x≤3$的否定為?x0∈R,函數(shù)f(x0)=2cos2x0+$\sqrt{3}$sin2x0>3.

分析 根據(jù)全稱命題的否定是特稱命題進(jìn)行判斷即可.

解答 解:全稱命題的否定是特稱命題,即為?x0∈R,函數(shù)f(x0)=2cos2x0+$\sqrt{3}$sin2x0>3,
故答案為:?x0∈R,函數(shù)f(x0)=2cos2x0+$\sqrt{3}$sin2x0>3,

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若變量x,y滿足條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最小值為( 。
A.-3B.-2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某種定點(diǎn)投籃游戲的規(guī)則如下:每人投籃10次,如果某同學(xué)某次沒(méi)有投進(jìn),則罰該同學(xué)做俯臥撐2個(gè).現(xiàn)有一同學(xué)參加該游戲,已知該同學(xué)在該點(diǎn)投籃的命中率為0.6,設(shè)該同學(xué)參加本次比賽被罰做俯臥撐的總個(gè)數(shù)記為X,則X的數(shù)學(xué)期望為(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.某中學(xué)調(diào)查200名學(xué)生每周晚自習(xí)時(shí)間(單位,小時(shí)),制成了如圖所示頻率分布直方圖,其中自習(xí)時(shí)間的范圍為[17.5,30],根據(jù)直方圖,這200名學(xué)生每周自習(xí)時(shí)間不少于22.5小時(shí)的人數(shù)是140.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$上一點(diǎn)P到左焦點(diǎn)的距離為5,則點(diǎn)P到右焦點(diǎn)的距離為(  )
A.13B.15C.12D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓$T:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,動(dòng)點(diǎn)P在橢圓上運(yùn)動(dòng),|PF1|•|PF2|的最大值為25,且點(diǎn)P到F1的距離的最小值為1.
(1)求橢圓T的方程;
(2)直線l與橢圓T有且僅有一個(gè)交點(diǎn)A,且l切圓M:x2+y2=R2(其中(3<R<5))于點(diǎn)B,求A、B兩點(diǎn)間的距離|AB|的最大值;
(3)當(dāng)過(guò)點(diǎn)C(10,1)的動(dòng)直線與橢圓T相交于兩不同點(diǎn)G、H時(shí),在線段GH上取一點(diǎn)D,滿足$|{\overrightarrow{GC}}|•|{\overrightarrow{HD}}|=|{\overrightarrow{GD}}|•|{\overrightarrow{CH}}|$,求證:點(diǎn)D在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.執(zhí)行下面的程序框圖,若輸入的N是5,那么輸出的S=-46.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若直線AB的方程為$\sqrt{3}$x+y-7=0,則直線AB的傾斜角是( 。
A.135°B.120°C.60°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.一種飲料每箱裝有6聽(tīng),經(jīng)檢測(cè),某箱中每聽(tīng)的容量(單位:ml)如以下莖葉圖所示.
(Ⅰ)求這箱飲料的平均容量和容量的中位數(shù);
(Ⅱ)如果從這箱飲料中隨機(jī)取出2聽(tīng)飲用,求取到的2聽(tīng)飲料中至少有1聽(tīng)的容量為250ml的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案