【題目】2018年至2020年,第六屆全國文明城市創(chuàng)建工作即將開始.在201797日召開的攀枝花市創(chuàng)文工作推進(jìn)會(huì)上,攀枝花市委明確提出“力保新一輪提名城市資格、確保2020年創(chuàng)建成功”的目標(biāo).為了確保創(chuàng)文工作,今年初市交警大隊(duì)在轄區(qū)開展“機(jī)動(dòng)車不禮讓行人整治行動(dòng)” .下表是我市一主干路口監(jiān)控設(shè)備抓拍的5個(gè)月內(nèi) “駕駛員不禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

違章駕駛員人數(shù)

(Ⅰ)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(Ⅱ)預(yù)測(cè)該路口7月份不“禮讓斑馬線”違章駕駛員的人數(shù);

(Ⅲ)交警從這5個(gè)月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查“駕駛員不禮讓斑馬線”行為與駕齡的關(guān)系,得到如下列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計(jì)

駕齡不超過

駕齡年以上

合計(jì)

能否據(jù)此判斷有97.5%的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

【答案】(1) ;(2)66;(3) 有97.5%的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān).

【解析】分析:(1)由表中數(shù)據(jù)知:,代入公式即可求得,從而求得違章人數(shù)與月份之間的回歸直線方程;

(2)把代入回歸直線方程即可;

(3)求得觀測(cè)值,從而即可得到答案.

詳解:(Ⅰ)由表中數(shù)據(jù)知:

,,

∴所求回歸直線方程為

(Ⅱ)由(Ⅰ)知,令,則人,

(Ⅲ)由表中數(shù)據(jù)得

根據(jù)統(tǒng)計(jì)有97.5%的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的極值;

(2)若在區(qū)間內(nèi)有唯一的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos=2.

(1)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;

(2)求曲線C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(

A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅?zhǔn)悄媳背瘯r(shí)代的偉大科學(xué)家,公元五世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積恒相等,那么這兩個(gè)幾何體的體積一定相等.設(shè)A,B為兩個(gè)同高的幾何體,A,B的體積不相等,A,B在等高處的截面積不恒相等.根據(jù)祖暅原理可知,pq的( 。

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中 ,為自然對(duì)數(shù)的底數(shù))

(Ⅰ)若函數(shù)無極值,求實(shí)數(shù)的取值范圍;

(Ⅱ)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸.曲線的極坐標(biāo)方程為,已知傾斜角為的直線經(jīng)過點(diǎn)

(1)寫出直線的參數(shù)方程;曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知cosA= ,sinB= C.
(1)求tanC的值;
(2)若a= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某印刷廠為了研究單冊(cè)書籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:

印刷冊(cè)數(shù)(千冊(cè))

單冊(cè)成本(元)

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲:,方程乙:.

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).

①完成下表(計(jì)算結(jié)果精確到);

印刷冊(cè)數(shù)(千冊(cè))

單冊(cè)成本(元)

模型甲

估計(jì)值

殘差

模型乙

估計(jì)值

殘差

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較,判斷哪個(gè)模型擬合效果更好.

(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場(chǎng)調(diào)查,新需求量為千冊(cè),若印刷廠以每?jī)?cè)元的價(jià)格將書籍出售給訂貨商,求印刷廠二次印刷千冊(cè)獲得的利潤?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書的成本).

查看答案和解析>>

同步練習(xí)冊(cè)答案