已知向量m=(sin ,1),n=(cos ,cos2).記f(x)=m·n.

(1)若f(α)=,求cos(-α)的值;

(2)在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且滿足(2a-c)cos B=bcos C,若f(A)=,試判斷△ABC的形狀.

 

(1)1 (2)等邊三角形

【解析】f(x)=sin cos +cos2sincos=sin()+

(1)由已知f(α)=得sin()+,

于是=2kπ+,k∈Z,即α=4kπ+,k∈Z,

∴cos(-α)=cos(-4kπ-)=1.

(2)根據(jù)正弦定理知:

(2a-c)cos B=bcos C⇒(2sin A-sin C)cos B=sin Bcos C⇒2sin Acos B=sin(B+C)=sin A⇒cos B=⇒B=,

∵f(A)=,

∴sin()+⇒A=或π,而0<A<,

所以A=,因此△ABC為等邊三角形.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(四)(解析版) 題型:選擇題

若等比數(shù)列{an}的前n項(xiàng)和Sn=a·3n-2,則a2等于(  )

A.4 B.12 C.24 D.36

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:選擇題

已知P是拋物線y2=4x上一動(dòng)點(diǎn),則點(diǎn)P到直線l:2x-y+3=0與到y(tǒng)軸的距離之和的最小值是(  )

A. B. C.2 D.-1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(二)(解析版) 題型:選擇題

已知圓的半徑為4,a、b、c為該圓的內(nèi)接三角形的三邊,若abc=16,則三角形的面積為(  )

A.2 B.8 C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(二)(解析版) 題型:選擇題

“θ≠”是“cos θ≠”的(  )

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:填空題

若函數(shù)f(x)=sin(x+α)-2cos(x-α)是奇函數(shù),則sin α·cos α=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:選擇題

已知函數(shù)f(x)=ax-1+3(a>0且a≠1)的圖象過一個(gè)定點(diǎn)P,且點(diǎn)P在直線mx+ny-1=0(m>0,且n>0)上,則的最小值是(  )

A.12 B.16 C.25 D.24

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)滿足x2f′(x)+2xf(x)=,f(2)=,則x>0時(shí),f(x)(  )

A.有極大值,無極小值

B.有極小值,無極大值

C.既有極大值又有極小值

D.既無極大值也無極小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第十章 算法初步、統(tǒng)計(jì)、統(tǒng)計(jì)案例(解析版) 題型:填空題

(2014·咸寧模擬)設(shè)數(shù)列{an}滿足:a3=8,(an+1-an-2)·(2an+1-an)=0(n∈N*),則a1的值大于20的概率為________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案