精英家教網 > 高中數學 > 題目詳情
拋物線上一點到直線的距離與到點的距離之差的最大值為(  )
A.B.C.D.
D

試題分析:作出拋物線的圖象如下圖所示,則點為拋物線的焦點,直線為拋物線的準線,
過點垂直于直線,垂足為點,由拋物線的定義的可知,則點到直線的距離與到點的距離之差等于,當、、三點不共線時,由三角形三邊之間的關系可知,,當點為射線與拋物線的交點時,,
此時點到直線的距離與到點的距離取到最大值,故選D.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

我們將不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點稱為切點.解決下列問題:
已知拋物線上的點到焦點的距離等于4,直線與拋物線相交于不同的兩點、,且為定值).設線段的中點為,與直線平行的拋物線的切點為..

(1)求出拋物線方程,并寫出焦點坐標、準線方程;
(2)用表示出點、點的坐標,并證明垂直于軸;
(3)求的面積,證明的面積與、無關,只與有關.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點M是拋物線上的一點,F(xiàn)為拋物線的焦點,A在圓C:上,則的最小值為__________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

拋物線=-2y2的準線方程是                .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

(5分)(2011•廣東)設圓C與圓x2+(y﹣3)2=1外切,與直線y=0相切,則C的圓心軌跡為(       )
A.拋物線B.雙曲線C.橢圓D.圓

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

過拋物線C:上的點M分別向C的準線和x軸作垂線,兩條垂線及C的準線和x軸圍成邊長為4的正方形,點M在第一象限.
(1)求拋物線C的方程及點M的坐標;
(2)過點M作傾斜角互補的兩條直線分別與拋物線C交于A,B兩點,如果點M在直線AB的上方,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(2011•浙江)已知拋物線C1:x2=y,圓C2:x2+(y﹣4)2=1的圓心為點M
(1)求點M到拋物線C1的準線的距離;
(2)已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1于A,B兩點,若過M,P兩點的直線l垂直于AB,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

以拋物線y2=4x的焦點為圓心,且過坐標原點的圓的方程為(  )
A.x2+y2+2x=0 B.x2+y2+x=0
C.x2+y2-x=0D.x2+y2-2x=0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若拋物線y2=2px的焦點與橢圓的右焦點重合,則p的值為( 。
A.﹣2B.2C.﹣4D.4

查看答案和解析>>

同步練習冊答案