已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)P(1,f(1))處的切線方程為y=3x+1.
(1)若函數(shù)y=f(x)在x=-2時(shí)有極值,求f(x)表達(dá)式;
(2)若函數(shù)y=f(x)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.
分析:(1)求出導(dǎo)函數(shù),令導(dǎo)函數(shù)在1處的值為3,在-2處的值為0,函數(shù)在1處的值為4,列出方程組求出a,b,c的值.
(2)令導(dǎo)函數(shù)大于等于0在[-2,1]上恒成立,通過(guò)對(duì)對(duì)稱軸與區(qū)間關(guān)系的討論求出導(dǎo)函數(shù)在區(qū)間的最小值,令最小值大于等于0,求出b的范圍.
解答:解:(1)f′(x)=3x
2+2ax+b
∵曲線y=f(x)在點(diǎn)P(1,f(1))處的切線方程為y=3x+1.
∴
即
∵函數(shù)y=f(x)在x=-2時(shí)有極值
∴f′(-2)=0即-4a+b=-12
∴
| 3+2a+b=3 | 1+a+b+c=4 | -4a+b=-12 |
| |
解得a=2,b=-4,c=5
∴f(x)=x
3+2x
2-4x+5
(2)由(1)知,2a+b=0
∴f′(x)=3x
2-bx+b
∵函數(shù)y=f(x)在區(qū)間[-2,1]上單調(diào)遞增
∴f′(x)≥0即3x
2-bx+b≥0在[-2,1]上恒成立
①當(dāng)x=≥1時(shí)f′(x)的最小值為f′(1)=1-b+b≥0∴b≥6
②當(dāng)x=≤-2時(shí),f′(x)的最小值為f′(-2)=12+2b+b≥0∴b∈∅
③-2<<1時(shí),f′(x)的最小值為
≥0∴0≤b≤6
總之b的取值范圍是0≤b≤6
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義:導(dǎo)數(shù)在切點(diǎn)處的值是切線的斜率;考查函數(shù)單調(diào)遞增對(duì)應(yīng)的導(dǎo)函數(shù)大于等于0恒成立,.