已知數(shù)列{an},其前n項(xiàng)和Sn滿足Sn+1=2λSn+1(λ是大于0的常數(shù)),且a1=1,a3=4.
(Ⅰ)求λ的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式an

解:(Ⅰ)由Sn+1=2λSn+1得S2=2λS1+1=2λa1+1=2λ+1,S3=2λS2+1=4λ2+2λ+1
∴a3=S3-S2=4λ2,∵a3=4,λ>0,∴λ=1
(Ⅱ)由Sn+1=2Sn+1整理得Sn+1+1=2(Sn+1),
∴數(shù)列{Sn+1}是以S1+1=2為首項(xiàng),以2為公比的等比數(shù)列
∴Sn+1=2•2n-1,∴Sn=2n-1,
∴an=Sn-Sn-1=2n-1(n≥2)
∵當(dāng)n=1時(shí),a1=1滿足an=2n-1,∴an=2n-1
分析:(Ⅰ)由已知,表示出a3=S3-S2=4λ2 解次方程即可.
(Ⅱ)由(Ⅰ)得 Sn+1=2Sn+1整理得Sn+1+1=2(Sn+1),求出Sn,再利用數(shù)列中an,Sn的關(guān)系求出an
點(diǎn)評(píng):本題考查數(shù)列中an,Sn的關(guān)系及應(yīng)用、等比數(shù)列的判定、通項(xiàng)公式,考查變形構(gòu)造的能力.屬于中檔題題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、已知數(shù)列{an},其前n項(xiàng)和Sn=n2+n+1,則a8+a9+a10+a11+a12=
100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},其前n項(xiàng)和為Sn=
3
2
n2+
7
2
n? (n∈N*)

(Ⅰ)求a1,a2;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式,并證明數(shù)列{an}是等差數(shù)列;
(Ⅲ)如果數(shù)列{bn}滿足an=log2bn,請(qǐng)證明數(shù)列{bn}是等比數(shù)列,并求其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知數(shù)列{an},其前n項(xiàng)和Sn滿足Sn+1=2λSn+1(λ是大于0的常數(shù)),且a1=1,a3=4.
(1)求λ的值;
(2)求數(shù)列{an}的通項(xiàng)公式an;
(3)設(shè)數(shù)列{nan}的前n項(xiàng)和為T(mén)n,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},其前n項(xiàng)和為Sn=
3
2
n2+
7
2
n (n∈N*)

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式,并證明數(shù)列{an}是等差數(shù)列;
(Ⅱ)如果數(shù)列{bn}滿足an=log2bn,請(qǐng)證明數(shù)列{bn}是等比數(shù)列,并求其前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},其前n項(xiàng)和為Sn,點(diǎn)(n,Sn)在以F(0,
14
)為焦點(diǎn),以坐標(biāo)原點(diǎn)為頂點(diǎn)的拋物線上,數(shù)列{bn}滿足bn=2 an
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=an×bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案