已知實(shí)數(shù)x,y滿足,則x+-4的最大值為   
【答案】分析:畫出不等式組對(duì)應(yīng)的平面區(qū)域,求出平面區(qū)域中各角點(diǎn)的坐標(biāo),然后利用角點(diǎn)法,將各個(gè)點(diǎn)的坐標(biāo)逐一代入目標(biāo)函數(shù),比較后即可得到結(jié)論.
解答:解:實(shí)數(shù)x,y滿足,對(duì)應(yīng)的平面區(qū)域如圖:三角形ABC的三邊及其內(nèi)部部分:
聯(lián)立得:C(3,1).
聯(lián)立得:A(7,9).
由圖得:當(dāng)L過(guò)點(diǎn)A(7,9)時(shí)z=x+有最大值,此時(shí)z=7+-4=
故答案為:
點(diǎn)評(píng):用圖解法解決線性規(guī)劃問(wèn)題時(shí),分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù).然后將可行域各角點(diǎn)的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x-y+2≥0
x+y≥0
x≤1
,則z=2x+y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x、y滿足
x≥1
y≥2
x+y≤4
,則u=
x+y
x
的取值范圍是
[2,4]
[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x+y≤2
x-y≤2
0≤x≤1
,則z=2x-3y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
y2-x≤0
x+y≤2
,則2x+y的最小值為
-
1
8
-
1
8
,最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)已知實(shí)數(shù)x,y滿足|2x+y+1|≤|x+2y+2|,且|y|≤1,則z=2x+y的最大值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案