已知函數(shù)f(x)在其定義域M內(nèi)為減函數(shù),且f(x)>0,證明g(x)=1+
2f(x)
在M內(nèi)為增函數(shù).
分析:已知函數(shù)f(x)在其定義域M內(nèi)為減函數(shù),可知對任意的x1<x2,f(x1)>f(x2),則可知
1
f(x1)
1
f(x2)
,進而判斷函數(shù)g(x)的單調(diào)性.
解答:解:已知函數(shù)f(x)在其定義域M內(nèi)為減函數(shù),
可知對任意的x1<x2
有f(x1)>f(x2),(5分0
又f(x)>0,
則可知
1
f(x1)
1
f(x2)
,(7分)
則對任意的x1<x2,
有 g(x1) -g(x2)=
2
f(x1)
-
2
f(x2)
<0
,(10分)
故g(x)=1+
2
f(x)
在M內(nèi)為增函數(shù).(12分)
點評:此題主要考查函數(shù)單調(diào)性的證明.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在其定義域上滿足:xf(x)+2af(x)=x+a-1,a>0.
①函數(shù)y=f(x)的圖象是否是中學對稱圖形?若是,請指出其對稱中心(不證明);
②當f(x)∈[
1
2
4
5
]
時,求x的取值范圍;
③若f(0)=0,數(shù)列{an}滿足a1=1,那么若0<an+1≤f(an)正整數(shù)N滿足n>N時,對所有適合上述條件的數(shù)列{an},an
1
10
恒成立,求最小的N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在其定義域上滿足xf(x)+2af(x)=x+a-1(a>0).
(1)函數(shù)y=f(x)的圖象是否是中心對稱圖形?若是,請指出其對稱中心(不證明);
(2)當f(x)∈[
1
2
,
4
5
]
時,求x的取值范圍;
(3)若f(0)=0,數(shù)列{an}滿足a1=1,那么:
①若0<an+1≤f(an),正整數(shù)N滿足n>N時,對所有適合上述條件的數(shù)列{an},an
1
10
恒成立,求最小的N;
②若an+1=f(an),求證:a1a2+a2a3+a3a4+…+anan+1
3
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)在其定義域M內(nèi)為減函數(shù),且f(x)>0,證明g(x)=1+數(shù)學公式在M內(nèi)為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年四川省南充一中高三(下)6月適應性考試數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)在其定義域上滿足xf(x)+2af(x)=x+a-1(a>0).
(1)函數(shù)y=f(x)的圖象是否是中心對稱圖形?若是,請指出其對稱中心(不證明);
(2)當時,求x的取值范圍;
(3)若f(0)=0,數(shù)列{an}滿足a1=1,那么:
①若0<an+1≤f(an),正整數(shù)N滿足n>N時,對所有適合上述條件的數(shù)列{an},恒成立,求最小的N;
②若an+1=f(an),求證:

查看答案和解析>>

同步練習冊答案