如圖,某小區(qū)進(jìn)行綠化改造.計(jì)劃圍出一塊三角形綠地ABC.其中一邊利用現(xiàn)成的圍墻BC.長(zhǎng)度為1(百米).另外兩邊AB,AC使用某種新型材料.∠BAC=120°設(shè)AB=x(百米),AC=y(百米)
(1)求x,y滿足的關(guān)系式(指出x的取值范圍)
(2)若無(wú)論如何設(shè)計(jì)另兩邊的長(zhǎng),都能確保圍成三角形綠地,則至少需要準(zhǔn)備長(zhǎng)度為多少(百米)的此種新型材料.
分析:(1)利用余弦定理,可求x,y滿足的關(guān)系式,及x的取值范圍;
(2)利用(1)的結(jié)論及基本不等式,即可求得結(jié)論.
解答:解:(1)由余弦定理可得,1=x2+y2-2xycos120°,∴x2+y2+xy=1,其中0<x<1;
(2)∵(x+y)2=x2+y2+2xy=1+xy≤1+
(x+y)2
4

∴(x+y)2
4
3

∴x+y≤
2
3
3
,當(dāng)且僅當(dāng)x=y=
3
3
時(shí),取等號(hào)
∴至少需要準(zhǔn)備長(zhǎng)度為
2
3
3
百米的此種新型材料.
點(diǎn)評(píng):本題考查余弦定理的運(yùn)用,考查基本不等式,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小區(qū)有一塊三角形空地,如圖△ABC,其中AC=180米,BC=90米,∠C=90°,開(kāi)發(fā)商計(jì)劃在這片空地上進(jìn)行綠化和修建運(yùn)動(dòng)場(chǎng)所,在△ABC內(nèi)的P點(diǎn)處有一服務(wù)站(其大小可忽略不計(jì)),開(kāi)發(fā)商打算在AC邊上選一點(diǎn)D,然后過(guò)點(diǎn)P和點(diǎn)D畫(huà)一分界線與邊AB相交于點(diǎn)E,在△ADE區(qū)域內(nèi)綠化,在四邊形BCDE區(qū)域內(nèi)修建運(yùn)動(dòng)場(chǎng)所.現(xiàn)已知點(diǎn)P處的服務(wù)站與AC距離為10米,與BC距離為100米.設(shè)DC=d米,試問(wèn)d取何值時(shí),運(yùn)動(dòng)場(chǎng)所面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省蘇州市高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某小區(qū)進(jìn)行綠化改造.計(jì)劃圍出一塊三角形綠地ABC.其中一邊利用現(xiàn)成的圍墻BC.長(zhǎng)度為1(百米).另外兩邊AB,AC使用某種新型材料.∠BAC=120°設(shè)AB=x(百米),AC=y(百米)
(1)求x,y滿足的關(guān)系式(指出x的取值范圍)
(2)若無(wú)論如何設(shè)計(jì)另兩邊的長(zhǎng),都能確保圍成三角形綠地,則至少需要準(zhǔn)備長(zhǎng)度為多少(百米)的此種新型材料.

查看答案和解析>>

同步練習(xí)冊(cè)答案