10.已知命題p:∅⊆{0},q:3∈{1,2}由它們構(gòu)成“p∨q”,“p∧q”,“¬p”三個(gè)命題中,真命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

分析 命題p:∅⊆{0},是真命題;q:3∈{1,2},是假命題.利用復(fù)合命題真假的判定方法即可得出.

解答 解:命題p:∅⊆{0},是真命題;q:3∈{1,2},是假命題.
則“p∨q”是真命題,“p∧q”是假命題,“¬p”是假命題.
∴真命題的個(gè)數(shù)是1.
故選:B.

點(diǎn)評 本題考查了集合之間的關(guān)系、元素與集合的關(guān)系、復(fù)合命題真假的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C:x2+y2-6y+8=0,O為原點(diǎn).
(1)求過點(diǎn)O的且與圓C相切的直線l的方程;
(2)若P是圓C上的一動點(diǎn),M是OP的中點(diǎn),求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)y=f(x)為偶函數(shù),且在(0,+∞)上是減函數(shù),有f(5)=0,$則\frac{{f(x)+f({-x})}}{2x}<0$的解集為(-5,0)∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.二面角α-l-β的平面角為50°,點(diǎn)P為空間內(nèi)一定點(diǎn),過點(diǎn)P的直線m與平面α,β都成25°角,這樣的直線m有3條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面四邊形ABCD中,AD=AB=$\sqrt{2}$,CD=CB=$\sqrt{5}$,且AD⊥AB,現(xiàn)將△ABD沿著對角線BD翻折成△A′BD,則在△A′BD折起至轉(zhuǎn)到平面BCD內(nèi)的過程中,直線A′C與平面BCD所成的最大角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若F1,F(xiàn)2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn),p是該橢圓上的一個(gè)動點(diǎn),且$|{P{F_1}}|+|{PF_2^{\;}}|=4,|{{F_1}{F_2}}|=2\sqrt{3}$.
(1)求出這個(gè)橢圓方程;
(2)是否存在過定點(diǎn)N(0,2)的直線l與橢圓交于不同的兩點(diǎn)A,B,使$\overrightarrow{OA}⊥\overrightarrow{OB}$(其中O為坐標(biāo)原點(diǎn))?若存在,求出直線l的斜率k;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.雙曲線$\frac{y^2}{9}-\frac{x^2}{4}=1$的漸近線方程為y=±$\frac{3}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=|x|-3的單調(diào)增區(qū)間是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)雙曲線Γ:x2-$\frac{{y}^{2}}{8}$=1的左右兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,A為雙曲線Γ的左頂點(diǎn),直線l過右焦點(diǎn)F2且與雙曲線Γ交于M,N兩點(diǎn),若AM,AN的斜率分別為k1,k2,且k1+k2=-$\frac{1}{2}$,則直線l的方程為y=-8(x-3)..

查看答案和解析>>

同步練習(xí)冊答案