(Ⅰ)寫出{an}和{bn}的通項公式;
(Ⅱ)試求滿足不等式≤-160b2的正整數(shù)m.
解:(Ⅰ)設(shè){an}的公差為d,則a2+a3=2a1+3d,
故2×(-393)+3d=-768,解得d=6, ∴an=-393+6(n-1)=6n-399. 由S==20,得q=,bn=2·()n-1(n∈N). (Ⅱ)∵a1+a2+…+am=ma1+=-393m+3m(m-1), ∴am+1+am+2+…+a2m=(a1+a2+…+a2m)-(a1+a2+…+am) =-393×(2m)+6m(2m-1)+393m-3m(m-1)=9m2-396m. ∵-160b2=-288,∴9m2-396m≤-288(m+1), m2-44m≤-32(m+1), 即(m-4)(m 又m∈N,從而m=4,5,6,7,8.
|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
i |
jn |
nπ |
2 |
nπ |
2 |
Pn |
nπ |
2 |
jn |
Pn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)Sn是等差數(shù){an}的前n項和,已知S6=36,Sn=324,若Sn-6=144(n>6),則n等于
A.15 B.16 C.17 D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
i |
jn |
nπ |
2 |
nπ |
2 |
Pn |
nπ |
2 |
jn |
Pn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com