【題目】已知直線為橢圓的右準(zhǔn)線,直線與軸的交點(diǎn)記為,過(guò)右焦點(diǎn)的直線與橢圓交于,兩點(diǎn).
(1)設(shè)點(diǎn)在直線上,且滿足,若直線與線段交于點(diǎn),求證:點(diǎn)為線段的中點(diǎn);
(2)設(shè)點(diǎn)的坐標(biāo)為,直線與直線交于點(diǎn),試問(wèn)是否為定值,若是,求出這個(gè)定值,若不是,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析; (2)為定值0.
【解析】
(1)設(shè)直線的方程為,直線的方程為, 故直線的方程為.再聯(lián)立橢圓方程和直線,根據(jù)韋達(dá)定理求出線段的中點(diǎn)為,滿足直線方程,所以,直線與線段交點(diǎn)為線段的中點(diǎn).
(2)當(dāng)直線的斜率為0時(shí), . 直線的斜率不為0時(shí),計(jì)算直線的方程,求得點(diǎn)的坐標(biāo)為,縱坐標(biāo)與點(diǎn)相等,即,.
(1)由橢圓方程為知,右焦點(diǎn)坐標(biāo),橢圓的右準(zhǔn)線方程為,點(diǎn)坐標(biāo).
①當(dāng)直線的斜率不存在時(shí),直線與線段交點(diǎn)即為右焦點(diǎn),此時(shí)點(diǎn)為線段的中點(diǎn).
②又由知,直線的斜率不為0,故設(shè)直線的方程為,
從而,直線的方程為,令得,點(diǎn)坐標(biāo)為,
故直線的方程為.
聯(lián)立方程組,消去得:,
設(shè),,則,
即,,
從而,線段的中點(diǎn).
又線段的中點(diǎn)的坐標(biāo)滿足直線方程,
所以,直線與線段交點(diǎn)為線段的中點(diǎn).
綜上可知,點(diǎn)為線段的中點(diǎn).
(2)當(dāng)直線的斜率為0時(shí),點(diǎn)即為點(diǎn),從而,故.
直線的斜率不為0時(shí),
由(1)知,,,
所以,則.
直線的方程為,又,
令,得,
所以點(diǎn)的坐標(biāo)為,縱坐標(biāo)與點(diǎn)相等。
即,所以.
綜上可知,為定值0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】劉徽《九章算術(shù)商功》中將底面為長(zhǎng)方形,兩個(gè)三角面與底面垂直的四棱錐體叫做陽(yáng)馬.如圖,是一個(gè)陽(yáng)馬的三視圖,則其外接球的體積為( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大數(shù)據(jù)時(shí)代對(duì)于現(xiàn)代人的數(shù)據(jù)分析能力要求越來(lái)越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過(guò)數(shù)學(xué)方法來(lái)代入某條數(shù)式的表示方式,比如,,2,,n是平面直角坐標(biāo)系上的一系列點(diǎn),用函數(shù)來(lái)擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點(diǎn)列比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)的擬合誤差為:.已知平面直角坐標(biāo)系上5個(gè)點(diǎn)的坐標(biāo)數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函數(shù)來(lái)擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差的最小值,并求出此時(shí)的函數(shù)解析式;
若用二次函數(shù)來(lái)擬合題干表格中的數(shù)據(jù),求;
請(qǐng)比較第問(wèn)中的和第問(wèn)中的,用哪一個(gè)函數(shù)擬合題目中給出的數(shù)據(jù)更好?請(qǐng)至少寫(xiě)出三條理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,分別為雙曲線的左、右焦點(diǎn),點(diǎn)P是以為直徑的圓與C在第一象限內(nèi)的交點(diǎn),若線段的中點(diǎn)Q在C的漸近線上,則C的兩條漸近線方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果對(duì)一切正實(shí)數(shù),,不等式恒成立,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在地上有同樣大小的 5 塊積木,一堆 2 個(gè),一堆 3 個(gè),要把積木一塊一塊的全部放到某個(gè)盒子里,每次 只能取出其中一堆最上面的一塊,則不同的取法有______種(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期;
(2)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度,再向下平移()個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,且函數(shù)的最大值為2.
(ⅰ)求函數(shù)的解析式; (ⅱ)證明:存在無(wú)窮多個(gè)互不相同的正整數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線經(jīng)過(guò)點(diǎn),兩條漸近線的夾角為,直線交雙曲線于、.
(1)求雙曲線的方程;
(2)若過(guò)原點(diǎn),為雙曲線上異于、的一點(diǎn),且直線、的斜率為、,證明:為定值;
(3)若過(guò)雙曲線的右焦點(diǎn),是否存在軸上的點(diǎn),使得直線繞點(diǎn)無(wú)論怎樣轉(zhuǎn)動(dòng),都有成立?若存在,求出的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱的底面是邊長(zhǎng)為2的正三角形,,分別是,的中點(diǎn).
(1)證明:平面;
(2)若直線與平面所成的角為,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com