【題目】在四棱錐中,底面為正方形, 底面, 為棱的中點(diǎn).

1)證明: ;

2)求直線與平面所成角的正弦值;

3)若中點(diǎn),棱上是否存在一點(diǎn),使得,若存在,求出的值,若不存在,說(shuō)明理由.

【答案】1)詳見(jiàn)解析;(2;(3

【解析】試題分析:(1)根據(jù)條件可證明平面,再根據(jù)線面垂直的性質(zhì)即可求解;(2)建立空間直角坐標(biāo)系后求得平面的一個(gè)法向量后即可求解;(3)設(shè),利用空間向量建立關(guān)于的方程即可求解.

試題解析:(1)因?yàn)?/span>底面, 所以,因?yàn)?/span>,所以平面,由于平面,所以有;(2)依題意,以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系(如圖), 不妨設(shè),可得, , , ,由為棱的中點(diǎn),得, , 向量,,設(shè)為平面的法向量,則,即,不妨令,可得為平面的一個(gè)法向量.所以所以,直線與平面所成角的正弦值為;(3)向量, .由點(diǎn)在棱上,設(shè),故,由,得, 因此,解得,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1axby+1=0(a,b不同時(shí)為0),l2:(a-2)xya=0,

(1)b=0,且l1l2,求實(shí)數(shù)a的值;

(2)當(dāng)b=3,且l1l2時(shí),求直線l1l2之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,已知),且.

(1)證明為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;

(2)設(shè),且證明

(3)在(2)小問(wèn)的條件下,若對(duì)任意的,不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=x2+ex (x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對(duì)稱的點(diǎn),則a的取值范圍是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:設(shè)一正方形紙片ABCD邊長(zhǎng)為2分米,切去陰影部分所示的四個(gè)全等的等腰三角形,剩余為一個(gè)正方形和四個(gè)全等的等腰三角形,沿虛線折起,恰好能做成一個(gè)正四棱錐(粘接損耗不計(jì)),圖中O為正四棱錐底面中心

若正四棱錐的棱長(zhǎng)都相等,求這個(gè)正四棱錐的體積V;

設(shè)等腰三角形APQ的底角為x,試把正四棱錐的側(cè)面積S表示為x的函數(shù),并求S的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解高一實(shí)驗(yàn)班的數(shù)學(xué)成績(jī),采用抽樣調(diào)查的方式,獲取了位學(xué)生在第一學(xué)期末的數(shù)學(xué)成績(jī)數(shù)據(jù),樣本統(tǒng)計(jì)結(jié)果如下表:

分組

頻數(shù)

頻率

合計(jì)

(1)求的值和實(shí)驗(yàn)班數(shù)學(xué)平均分的估計(jì)值;

(2)如果用分層抽樣的方法從數(shù)學(xué)成績(jī)小于分的學(xué)生中抽取名學(xué)生,再?gòu)倪@名學(xué)生中選人,求至少有一個(gè)學(xué)生的數(shù)學(xué)成績(jī)是在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且

(1)判斷函數(shù)的奇偶性;

(2) 判斷函數(shù)(1,+)上的單調(diào)性,并用定義證明你的結(jié)論;

(3),求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=xR),gx=2a-1

1)求函數(shù)fx的單調(diào)區(qū)間與極值

2)若fx≥gx對(duì)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的右焦點(diǎn)為F,上頂點(diǎn)為A,短軸長(zhǎng)為2,O為原點(diǎn),直線AF與橢圓C的另一個(gè)交點(diǎn)為B,且△AOF的面積是△BOF的面積的3倍.
(1)求橢圓C的方程;
(2)如圖,直線l:y=kx+m與橢圓C相交于P,Q兩點(diǎn),若在橢圓C上存在點(diǎn)R,使OPRQ為平行四邊形,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案