設(shè)拋物線y2 =2pxp>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線交拋物線于AB兩點(diǎn),點(diǎn)C在拋物線的準(zhǔn)線上,且BCx軸.證明直線AC經(jīng)過(guò)原點(diǎn)O

證明:因?yàn)閽佄锞y2 =2pxp>0)的焦點(diǎn)為F ,0),所以經(jīng)過(guò)點(diǎn)F的直線AB的方程可設(shè)為

;                           

代入拋物線方程得   y2 -2pmyp2 = 0,

若記Ax1,y1),B x2,y2),則y1,y2是該方程的兩個(gè)根,所以 y1y2 = -p2.                                                     

因?yàn)?i>BC∥x軸,且點(diǎn)c在準(zhǔn)線x = -上,所以點(diǎn)C的坐標(biāo)為(-,y2),

故直線CO的斜率為

k也是直線OA的斜率,所以直線AC經(jīng)過(guò)原點(diǎn)O.                

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)p>0是一常數(shù),過(guò)點(diǎn)Q(2p,0)的直線與拋物線y2=2px交于相異兩點(diǎn)A、B,以線段AB為直經(jīng)作圓H(H為圓心).試證拋物線頂點(diǎn)在圓H的圓周上;并求圓H的面積最小時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)一模)F是拋物線y2=2px(p>0)的焦點(diǎn),過(guò)焦點(diǎn)F且傾斜角為θ的直線交拋物線于A,B兩點(diǎn),設(shè)|AF|=a,|BF|=b,則:
①若θ=60°且a>b,則
a
b
的值為
3
3
;②a+b=
|AB|=
2p
sin2θ
2p(tan2θ+1)
tan2θ
|AB|=
2p
sin2θ
2p(tan2θ+1)
tan2θ
(用p和θ表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2008•浦東新區(qū)二模)問(wèn)題:過(guò)點(diǎn)M(2,1)作一斜率為1的直線交拋物線y2=2px(p>0)于不同的兩點(diǎn)A,B,且點(diǎn)M為AB的中點(diǎn),求p的值.請(qǐng)閱讀某同學(xué)的問(wèn)題解答過(guò)程:
解:設(shè)A(x1,y1),B(x2,y2),則y12=2px1,y22=2px2,兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并給出當(dāng)點(diǎn)M的坐標(biāo)改為(2,m)(m>0)時(shí),你認(rèn)為正確的結(jié)論:
p=m(0<m<4)
p=m(0<m<4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線y2=2p(x+)(p>0)的準(zhǔn)線和焦點(diǎn)分別是雙曲線的右準(zhǔn)線和右焦點(diǎn),直線y=kx與拋物線及雙曲線在第一象限分別交于點(diǎn)A、B,且A為線段OB的中點(diǎn)(O為坐標(biāo)原點(diǎn)).

(Ⅰ)當(dāng)k=時(shí),求雙曲線漸近線的斜率;

(Ⅱ)設(shè)拋物線的頂點(diǎn)為M,拋物線與直線y=kx的另一交點(diǎn)為C,是否存在實(shí)數(shù)k,使得△ACM的面積等于直線MA、MC的斜率的乘積的絕對(duì)值?若存在,求出k值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年重慶市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)p>0是一常數(shù),過(guò)點(diǎn)Q(2p,0)的直線與拋物線y2=2px交于相異兩點(diǎn)A、B,以線段AB為直經(jīng)作圓H(H為圓心).試證拋物線頂點(diǎn)在圓H的圓周上;并求圓H的面積最小時(shí)直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案