【題目】已知函數(shù),對∈[0, π],都有,滿足f(x2)=0的實數(shù)x有且只有3個,給出下述四個結論:①滿足題目條件的實數(shù)x0有且只有1個;②滿足題目條件的實數(shù)x1有且只有1個;③f(x)在上單調(diào)遞增;④的取值范圍是;其中所有正確結論的編號是( )
A.①③B.②④C.①②④D.①③④
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點,軸正半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若直線與曲線交于,兩點,已知點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】區(qū)塊鏈技術被認為是繼蒸汽機、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術區(qū)塊鏈作為構造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關數(shù)據(jù),如表
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號 | 1 | 2 | 3 | 4 | 5 |
企業(yè)總數(shù)量y(單位:千個) | 2.156 | 3.727 | 8.305 | 24.279 | 36.224 |
注:參考數(shù)據(jù)(其中z=lny).
附:樣本(xi,yi)(i=1,2,…,n)的最小二乘法估計公式為
(1)根據(jù)表中數(shù)據(jù)判斷,y=a+bx與y=cedx(其中e=2.71828…,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結果即可,不必說明理由)
(2)根據(jù)(1)的結果,求y關于x的回歸方程(結果精確到小數(shù)點后第三位);
(3)為了促進公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進行一次信息化技術比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請通過計算說明,哪兩個公司進行首場比賽時,甲公司獲得“優(yōu)勝公司”的概率最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調(diào)查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:
分數(shù)不少于120分 | 分數(shù)不足120分 | 合計 | |
線上學習時間不少于5小時 | 4 | 19 | |
線上學習時間不足5小時 | |||
合計 | 45 |
(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;
(2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);
②若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C關于x軸、y軸都對稱,并且經(jīng)過兩點,
(1)求橢圓C的離心率和焦點坐標;
(2)D是橢圓C上到點A最遠的點,橢圓C在點B處的切線l與y軸交于點E,求△BDE外接圓的圓心坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在邊長為4的菱形中,,于點,將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)求二面角的余弦值;
(3)判斷在線段上是否存在一點,使平面平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】今年3月10日湖北武漢某方艙醫(yī)院“關門大吉”,某省馳援湖北“抗疫”的9名身高各不相同的醫(yī)護人員站成一排合影留念,慶祝圓滿完成“抗疫”任務,若恰好從中間往兩邊看都依次變低,則身高排第4的醫(yī)護人員和最高的醫(yī)護人員相鄰的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com