【題目】已知函數(shù)f(x)=x2﹣2|x﹣a|(a∈R).
(1)若函數(shù)f(x)為偶函數(shù),求a的值;
(2)當(dāng)a>0時(shí),若對(duì)任意的x∈[0,+∞),不等式f(x﹣1)≤2f(x)恒成立,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:由函數(shù)y=f(x)為偶函數(shù)可知,

對(duì)任何x都有f(﹣x)=f(x),

得:(﹣x)2﹣2|﹣x﹣a|=x2﹣2|x﹣a|,

即|x+a|=|x﹣a|對(duì)任何x恒成立,

平方得:4ax=0對(duì)任何x恒成立,

而x不恒為0,則a=0;


(2)解:將不等式f(x﹣1)≤2f(x),

化為(x﹣1)2﹣2|x﹣1﹣a|≤2x2﹣4|x﹣a|,

即 4|x﹣a|﹣2|x﹣1﹣a|≤x2+2x﹣1(*)對(duì)任意x∈[0,+∞)恒成立,

1)當(dāng)0≤x≤a 時(shí),將不等式(*)可化為 x2+4x+1﹣2a≥0,

對(duì)0≤x≤a上恒成立,則g(x)=x2+4x+1﹣2a 在(0,a]為單調(diào)遞增,

只需g(x)min=g(0)=1﹣2a≥0,得0<a≤

2)當(dāng) a<x≤a+1時(shí),將不等式(*)可化為x2﹣4x+1+6a≥0,

對(duì)a<x≤a+1上恒成立,由(1)可知0<a≤ ,

則h(x)=x2﹣4x+1+6a 在(a,a+1]為單調(diào)遞減,

只需h(x)min=h(a+1)=a2+4a﹣2≥0 得:a≤﹣ ﹣2或a≥ ﹣2,

即: ﹣2≤a≤

3)當(dāng) x>a+1時(shí),將不等式(*)可化為x2+2a﹣3≥0對(duì)x>a+1恒成立

則t(x)=x2+2a﹣3 在(a+1,+∞) 為單調(diào)遞增,

由(2)可知 ﹣2≤a≤ 都滿(mǎn)足要求.

綜上:實(shí)數(shù)的取值范圍為: ﹣2≤a≤


【解析】(1)由偶函數(shù)的定義,化簡(jiǎn)整理,由恒成立思想可得a=0;(2)將不等式f(x﹣1)≤2f(x),化為(x﹣1)2﹣2|x﹣1﹣a|≤2x2﹣4|x﹣a|,即 4|x﹣a|﹣2|x﹣1﹣a|≤x2+2x﹣1對(duì)任意x∈[0,+∞)恒成立,對(duì)x討論:(1)當(dāng)0≤x≤a時(shí),(2)當(dāng)a<x≤a+1時(shí),(3)當(dāng)x>a+1時(shí),去掉絕對(duì)值,由二次函數(shù)的最值求法,可得最小值,解不等式即可得到a的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子公司開(kāi)發(fā)一種智能手機(jī)的配件,每個(gè)配件的成本是15元,銷(xiāo)售價(jià)是20元,月平均銷(xiāo)售件,通過(guò)改進(jìn)工藝,每個(gè)配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場(chǎng)分析的結(jié)果表明,如果每個(gè)配件的銷(xiāo)售價(jià)提高的百分率為,那么月平均銷(xiāo)售量減少的百分率為,記改進(jìn)工藝后電子公司銷(xiāo)售該配件的月平均利潤(rùn)是(元).

(1)寫(xiě)出的函數(shù)關(guān)系式;

(2)改進(jìn)工藝后,試確定該智能手機(jī)配件的售價(jià),使電子公司銷(xiāo)售該配件的月平均利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(Ⅰ)函數(shù)f(x)滿(mǎn)足對(duì)任意的實(shí)數(shù)x,y都有f(xy)=f(x)+f(y),且f(4)=2,求f( )的值; (Ⅱ)已知函數(shù)f(x)是定義在[﹣1,1]上的奇函數(shù),且f(x)在[﹣1,1]上遞增,求不等式f(x+ )+f(x﹣1)<0
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2

(Ⅰ)求曲線C1C2的直角坐標(biāo)方程,并分別指出其曲線類(lèi)型;

(Ⅱ)試判斷:曲線C1C2是否有公共點(diǎn)?如果有,說(shuō)明公共點(diǎn)的個(gè)數(shù);如果沒(méi)有,請(qǐng)說(shuō)明理由;

(Ⅲ)設(shè)是曲線C1上任意一點(diǎn),請(qǐng)直接寫(xiě)出a + 2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)= x·ex, , ,若對(duì)任意的,都有成立,則實(shí)數(shù)k的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),,線段的垂直平分線與直線交于點(diǎn).

(1)求點(diǎn)的軌跡方程;

(2)若直線與點(diǎn)的軌跡相切,且與圓相交于點(diǎn),求直線和三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A中含有三個(gè)元素3,x,x2﹣2x.
(1)求實(shí)數(shù)x應(yīng)滿(mǎn)足的條件;
(2)若﹣2∈A,求實(shí)數(shù)x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常數(shù)a∈R.

(Ⅰ)討論g(x)的單調(diào)性;

(Ⅱ)當(dāng)a>0時(shí),若f(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),求證:在區(qū)間(1,+∞)上存在f(x)的極值點(diǎn)x0,使得x0lnx0+lnx0-2x0>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù))的對(duì)稱(chēng)中心到對(duì)稱(chēng)軸距離的最小值為.

(Ⅰ)求;

(Ⅱ)中,角的對(duì)邊分別為.已知銳角為函數(shù)的一個(gè)零點(diǎn),且,的面積,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案